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Abstract

Game playing is an important application for testing algorithms and approaches
from Artificial Intelligence. Board games can be used to test search algorithms,
which treat games as trees. Next to game playing, which is concerned is con-
cerned with predicting the best move in a given position, game solving is con-
cerned with assigning a game-theoretic value to position, e.g. to determine a
win or loss. Proof-Number Search (PNS) is a search method that can be used
to solve games and endgame positions.

In this thesis, it is investigated how PNS can be improved by introducing a
new search variant, two-level df-pn, and search enhancements. Proposed search
enhancements include move frequency, move availability and deep-learning. Im-
provements are evaluated on the games Lines of Action (LOA), Hex, Othello
and Connect6. Therefore, the performance of enhancements and two-level df-
pn is compared to existing approaches. Even though no improvements could
be achieved on Connect6 and Othello, two-level df-pn solves a set of positions
faster than other two-level methods for LOA and Hex.

Next, the frequency and availability enhancements are proposed in LOA.
They reduce the number of evaluated nodes and execution time by up to 90%
over a search without enhancements. Existing enhancements are outperformed
by a short execution time of approximately a third, while maintaining a compa-
rable number of nodes evaluated. Similarly, frequency and availability enhance-
ments achieve reduction of almost 90% in execution time and nodes evaluated
for Hex. Using deep learning to estimate the proof and disproof number of leaf
nodes reduces the number of nodes evaluated by 80% in LOA and more than
50% in Hex. In both games, the deep-learning enhancement does not perform
better than move frequency and availability enhancements. Instead of reducing
the execution time, the deep learning enhancement increases it by a factor up
to 20 in LOA and 40 in Hex, due to the computational overhead of making
predictions with the network and preprocessing positions in the correct shape.

Finally, all enhancements have been applied to a LOA version with a smaller
board, where the frequency and availability reduced the amount of nodes eval-
uated by 75% over a search without enhancements.
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Chapter 1

Introduction

In this thesis, Proof-Number search is investigated in order to find potential
improvements. This chapter discusses the current state of game playing in
Artificial Intelligence (AI), in Section 1.1. Following, Section 1.2 outlines the
application of search in games and Section 1.3 describes the application of ma-
chine learning in games. Lastly, the problem statement of this thesis and three
research questions are formulated in Section 1.4.

1.1 Artificial Intelligence and Games

For thousands of years, board games have been an important part of leisure
activities. Often in a two-player setting, board games offer an environment
to compete and compare skill. Humans use intuition to play games, whereas
computers rely solely on algorithms to play. Board games offer a suitable en-
vironment for testing algorithms. The space of possible actions is well defined
and observable. Additionally, the outcome of a game can easily be specified.
Game playing is an important application for testing algorithms and approaches
from AI. Programs and game engines are tested by playing against humans, and
performance can be evaluated in competitions. This gives a framework for im-
provement for search algorithms. In 1953, advances on AI in game playing have
been made by Turing, who described how computers could play chess (Bowden,
1953). Game engines have been using AI methods for the past decades. An
example for this is Deep Blue (Campbell et al., 2002), the first chess engine
to beat the world champion. Development and advances in AI in games are
further encouraged by competitions such as the Computer Olympiad organized
by the International Computer Games Association (ICGA).1 The Computer
Olympiad is a competition for engines in various games, including chess, Go,
Checkers and Hex. In order for computers to play games, search techniques and
machine learning are applied. Search techniques focus on investigating various

1https://icga.org/
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moves, while machine learning is focused on learning to play from existing data,
such as played games.

1.2 Search and Games

Search in games can be used to evaluate game positions, and for instance esti-
mate the best move in a given position. Therefore, the game is interpreted as a
tree where board positions are represented by nodes. The Minimax algorithm
(von Neumann et al., 1944) is an early game search algorithm. A heuristic
evaluation function is applied to assign scores to game positions. Two play-
ers compete against each other, whereas the first player tries to maximize his
score and the second player minimizes it. Nodes are be evaluated in a depth-
first manner to determine the score of a position. A significant improvement
was achieved by an enhancement of the Minimax algorithm, the αβ algorithm
(Knuth and Moore, 1975). αβ search evaluates nodes of a game tree in a depth-
first manner, keeping track of the lower bound α and upper bound β that can
be achieved, which enables a pruning of moves. Enhancements including move
ordering (Schaeffer, 1989) and iterative deepening (Frey, 1983) lead to a fur-
ther improvement of the performance. Another enhancement to αβ search is
Conspiracy Number Search(CNS) (McAllester, 1988). In CNS, the reliability of
the Minimax score is considered, which can help to determine irrelevant search
paths. A different, heuristic search method is Monte Carlo Tree Search (MCTS)
(Coulom, 2007). Contrary to αβ search, no evaluation function is needed, as
nodes are evaluated based on the outcome of simulated games.

Another field of research is the solving of games. Contrary to game playing,
which is concerned with predicting the best move in a given position, game
solvers are concerned with assigning a theoretic value to position, determining
a win or loss. Theoretical proofs are applied to games such as Nim (Bouton,
1901). In theory, with sufficient memory and time, all game positions can be
solved by methods such as αβ search, by creating every possible playout position
until a terminal position is reached. Instead of evaluating game positions and
assigning an estimated guess, only terminal positions are given a definite value.
Thereby simple games such as Tic-Tac-Toe could be solved (Allis, 1994). Such
an approach is likely to fail in practice, as narrow and deep search paths are fre-
quently required to solve endgame positions. Proof-Number search (PNS) (Allis
et al., 1994) is a search method, which originates from CNS, that can be used
to solve endgame positions. Instead of following a depth-first approach, as in
αβ search, PNS is a best-first search algorithm that guides the search process to
investigate the simplest node to prove, allowing for narrow search paths. Due to
its efficiency, PNS has been applied to solve games including Checkers (Schaeffer
et al., 2007), Connect-Four (Allis, 1988) and Fanorano (Schadd, 2011).
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1.3 Machine Learning and Games

Deep learning has achieved popularity in multiple domains, ranging from robotics,
image recognition to game playing. For board games, learning techniques can
be used to analyze positions or played games to make predictions. While MCTS
had difficulties in playing Go on a 19 × 19 board (Browne et al., 2012), recent
media attention has been drawn to AlphaGo (Silver et al., 2016), which won a
best of 5 series against the world champion in Go. AlphaGo enhanced MCTS
search with deep learning to guide the search process. A base of expert games
was used to train AlphaGo. Furthermore, AlphaZero has reached “super-
human performance” (Silver et al., 2017) without any human generated data to
learn from. Not only does AlphaZero achieve superhuman performance in the
game of Go, but the same approach has been transferred to Chess and Shogi,
where it outperformed existing engines likewise.
This shows that deep learning methods can be used to improve the search per-
formance in board games. Other search methods such as αβ search (David
et al., 2017) and PNS (Gao et al., 2017) can utilize deep learning to improve
the search process. However, applications of learning techniques for estimating
the value of board positions have not been investigated in PNS yet.

1.4 Problem Statement and Research Questions

When it comes to solving games or endgame positions, PNS is the most promis-
ing search technique to use. However, with problems and game domains of
increasing complexity, performance improvements are required to allow for fur-
ther application, advances and success of PNS. Performance improvements can
be achieved in the nodes required to solve a position or the required time to
solve them. To achieve improvements, previous work introduced PNS variants,
search enhancements and applied domain knowledge.

Machine learning and deep learning offer techniques that can be applied to
board games and achieved tremendous improvements in MCTS across multiple
games. Learning techniques have not been fully evaluated for applicability for
PNS. An analysis of different enhancements for PNS, especially learning tech-
niques, can achieve improvements in performance, independent of game domain.
Therefore, the following problem statement serves as a basis for this thesis:

How to improve Proof-Number search for two-player board games?

To address this problem statement, three research questions are investigated:

1. How do the different PNS variants perform?

The first research question is two-fold. On one hand, current PNS variants
are evaluated on different board games in order to establish a baseline perfor-
mance. On the other hand, a new PNS variant, two-level df-pn, is introduced
and evaluated accordingly.

3



2. How can proof and disproof number of leaf nodes be initialized
to improve the search procedure, independent of game domain?

Performance improvements and speedups can be achieved with extensions that
initialize proof and disproof number. Often times, such extensions rely on do-
main knowledge to justify their application and are not easily transferable to
other domains. In order to answer this question, a domain-independent initial-
ization method is introduced and compared to the base performance (RQ1).

3. Can deep learning be used to improve the search procedure by
initializing proof and disproof number of leaf nodes?

To answer the last question, it is not only of importance whether proof and
disproof number can be estimated with Deep Learning techniques, but also
how and with which accuracy. Deep Learning models are proposed to estimate
proof and disproof number. Those models are used in PNS variants and the
performance is evaluated and compared to the base performance (RQ1) and
new methods (RQ2).

1.5 Thesis Structure

Chapter 2 describes PNS and its variants. Furthermore, a new PNS variant,
two-layer df-pn is introduced. Additional information on existing enhancements
of PNS is given. In Chapter 3, game domains are introduced. This includes an
analysis of the current state of the art. Chapter 4 gives an outline on ma-
chine learning techniques and their application in game playing. In Chapter 5,
methods for predicting proof and disproof number are investigated and defined.
Chapter 6 carries out experiments. Those include measures of the baseline
performance of PNS variants over various game domains, with and without en-
hancements. The use of deep learning in PNS is evaluated. Furthermore, results
are evaluated and discussed. The performance of the deep learning estimation
is compared with baseline performances. Lastly, Chapter 7 outlines limitations
and future fields of research. Appendices are added at the end of the thesis.

4



Chapter 2

Proof-Number Search

In this chapter, the basics of Proof-Number search are explained. Firstly,
AND/OR trees are defined in Section 2.1. Following, various Proof-Number
search variants are explained in Sections 2.2-2.5. Section 2.6 describes two-level
search variants. Search enhancements are introduced in Section 2.7. Lastly, a
description of the Graph-History-Interaction problem (Section 2.8) is given and
other PNS variants are mentioned (Section 2.9).

2.1 AND/OR Tree

AND/OR trees can be used to represent two-player games. They are rooted
trees, consisting of two types of nodes, OR and AND nodes. OR nodes represent
the first player to move; AND nodes represent the second player to move. Each
node represents a board position and the execution of a legal move results in
the creation of a child node. A node with children is called internal node; nodes
without children are called leaf nodes. Each node is assigned with one of three
values, in regard to the first player: win, loss, unknown. win shows that a node
is a proven win, loss represents a proven loss and unknown indicates that further
evaluations have to be conducted to determine the value of the node. If a node
is a terminal position, either win or loss is assigned as its value, otherwise it is
treated as unknown. Terminal nodes are leaf nodes. For every internal node,
values are determined as follows:

• OR node:

– Win if any of its children is a win

– Loss if all of its children are a loss

• AND node:

– Win if all of its children are a win

– Loss if any of its children is a loss

5



The value of a tree is determined by its root value. As AND/OR trees are only
able to distinguish between a win or loss, draws are interpreted as losses, as
the first player fails to win. Figure 2.1 shows an example of an AND/OR tree.

A

B C

D E F G H

I J

Win Loss ? Win

WinLoss

Figure 2.1: Example of an AND/OR tree. OR nodes shown as squares, AND
nodes as circles.

Squares represent OR nodes and circles represent AND nodes. The root of the
tree is an OR node. Node B is a loss for the first player, as a loss (E) can
be forced by the second player. Therefore, F does not need to be evaluated
anymore. The first player can force a win, indicated by the bold line, by opting
for C. The second player can only choose to go for H, as G is an immediate
win for the first player. However, H is a win for the first player as well, as one
of its child nodes is a win. The value of the AND/OR tree is a win for the first
player.

2.2 Proof-Number Search

Proof-Number search (PNS) is a best-first tree search algorithm applied to de-
termine the definite value of AND/OR trees (Allis et al., 1994). No domain
knowledge is required for this purpose, only terminal positions need to be rec-
ognized.
To guide the search process, PNS introduces two values that are used to describe
nodes: proof number (pn) and disproof number (dpn). While pn represents the
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minimum number of leaf nodes that have to be proven, as a win, for the node
to be proven, dpn represents the minimum number of leaf nodes that have to be
disproven, as a loss, for the node to be disproven. Non-terminal positions with
unknown value are assigned with pn and dpn of 1. If a position is lost, it has a
pn of ∞ and dpn of 0; if a position is won, it has a pn of 0 and dpn of ∞. pn
and dpn of internal nodes are determined as follows:

• OR node:

– pn: minimum pn of children

– dpn: sum dpn of children

• AND node:

– pn: sum pn of children

– dpn: minimum dpn of children

PNS utilises a most-proving node (MPN) (Allis, 1994) to determine the next
node for evaluation in a best-first manner. Therefore, two criteria are being
considered, the shape of the tree as well as pn and dpn of nodes. Starting at
the root, the MPN is selected by following a path that selects child nodes with
minimum pn at OR nodes and child nodes with minimum dpn at AND nodes.
The application of PNS can be investigated in an AND/OR tree as shown in
Figure 2.2. It can be seen that nodes with unknown values are initialized with

A

B C

D E F G

Draw ? Win ?

2

1

1

1

2

1

1

1
H

1

1

?

INF

0

INF

0

0

INF

Figure 2.2: Example of PNS in an AND/OR tree. OR nodes shown as squares,
AND nodes as circles, pn above dpn next to nodes.

a pn and dpn of 1 (E, G, H). The value of D is equal to a loss, as draws are
interpreted as losses for the first player. The MPN is G, the path to the MPN
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is highlighted bold. H could also be chosen as a MPN, depending on how ties
are broken. The general PNS procedure is as follows:

1. Select MPN

2. Generate children (Expand)

3. Evaluate child nodes

4. Backpropagate pn and dpn

The given steps are repeated until the pn at the root is either 0 (win) or ∞
(loss). Pseudocode of the PNS algorithm can be found in Appendix A.

2.3 PN*

PN* is a variant of PNS, which transforms the best-first approach to a depth-first
search (Seo et al., 2001). PN* applies iterative deepening as a means to solve for
memory problems that can arise in PNS, which keeps the entire tree in memory.
PN* performs several searches, starting from the root. A single search procedure
is bounded by thresholds and is carried out until the thresholds are exceeded.
Afterwards, a new search procedure is carried out with updated thresholds, until
a solution is found. In iterative deepening approaches, identical nodes can be
expanded and evaluated multiple times. In order to reduce this overhead, results
of evaluated nodes are stored in a transposition table (Greenblatt et al., 1967).
Not only does PN* apply multiple iterative deepening at the root node but also
at all interior OR nodes. At AND nodes, thresholds assigned to children OR
nodes are iteratively increased, starting from 1 (Sakuta and Iida, 2001). PN*
gives a threshold to the subtree it is searching and continues the search process
until the threshold is reached. Each iteration of PN* increments the search
threshold at the root. In contrast to PNS, only pn is regarded in PN*.

2.4 Proof-Number and Disproof-Number Search

Proof-number and Disproof-number search (PDS) is an extension to the PN*
algorithm (Nagai, 1999). PDS is a depth-first multiple iterative-deepening al-
gorithm and uses pn and dpn to set thresholds for the search process. By using
thresholds for dpn, PDS extends PN* in not only performing multiple iterative
deepening at OR nodes but also at AND nodes. pn and dpn thresholds are given
to a node and the subtree is searched while pn and dpn are within the thresh-
olds. Based on this, PDS is able to find disproof and proof solutions to subtrees
(Nagai, 1998). As well as PN*, PDS uses a transposition table to store results
and speed up the search process. Winands et al. (2004b) apply the replacement
scheme TwoBig (Breuker et al., 1996).
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2.5 Depth-First Proof-Number Search

Another depth-first variant of PNS is depth-first proof-number search (df-pn)
(Nagai and Imai, 1999). Unlike in PN* and PDS, no iterative deepening is
performed at the root node. df-pn uses thresholds for pn and dpn. According
to van den Herik and Winands (2008), pn thresholds are called pnt and dpn
thresholds dnt. df-pn initializes pnt and dnt with ∞ and searches subtrees
within the thresholds. The search terminates when a solution to the tree has
been found. If pnt is equal to ∞ after termination of the search, the tree is a
win for the first player, otherwise it is a loss. The search is carried on as long
as pn and dpn of subtrees are smaller than the thresholds. While the search
continues, thresholds are distributed among subtrees. The selection of the most
proving node proceeds according to the procedure in PNS. Given a node n, if n
is an OR node the child c with lowest pn is selected, while at an AND node the
child c with the lowest dpn is selected. Additionally, df-pn keeps track of the
child c2 with second lowest pn and dpn, respectively. This information is used
to determine the threshold for c at an OR node as follows:

pntc = min(pntn, pnc2 + 1) (2.1)

dntc = dntn + dnc − sum(childrendn) (2.2)

Thresholds at an AND node are determined in the following way:

pntc = pntn + pnc − sum(childrenpn) (2.3)

dntc = min(dntn, dnc2 + 1)) (2.4)

The behaviour of df-pn is illustrated in Figure 2.3, according to Kishimoto
et al. (2012). Thresholds at the root A are initialized with ∞. The path to
the MPN D is highlighted in bold. B is selected at first, because of a lower pn
than C. Afterwards, the thresholds are adjusted to pnt(B) = pn(C)+1 = 4 and
dnt(B) = dnt(A)−dpn(C) =∞−1, as B is evaluated while it is more favourable
than the second best child of A, C. Next, D is chosen, as the child with lowest
dpn and thresholds are readjusted to pnt(D) = pnt(B) − pn(E) = 4 − 1 = 3
and dnt(D) = min(dnt(B), dpn(E) + 1) = 3. In contrast to PDS, which is a
depth-first algorithm that almost behaves in a best-first manner (Nagai, 1998),
df-pn always select the MPN as PNS (Nagai, 2001).

2.6 Two-Level Search

In addition to the variants introduced, two-level variants have been proposed,
which combine two variants with each other.

2.6.1 Motivation

The general motivation behind a two-level search process is to allow for deeper
search paths while maintaining fewer nodes in memory (Allis, 1994). At first,
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pnt(A)=INF

dnt(A)=INF

pnt(B)=4

dnt(B)=INF-1

pnt(D)=3

dnt(D)=3

Figure 2.3: Example of df-pn. OR nodes shown as squares, AND nodes as
circles, pn above dpn next to nodes, thresholds are given on the left.

a MPN is detected by the search on the first level. Afterwards, a second level
search is started with the MPN as a root. pn and dpn of the MPN is set to the
result of the second level search. After the search terminates, the second level
search tree can be discarded as it is not needed for further evaluations, thereby
reducing memory requirements.

2.6.2 First Level

The first-level search is kept in memory. The search is performed as usual with
the only difference that the evaluation of a MPN initiates a search on the second
level to determine pn and dpn. The first level applies a delayed evaluation of leaf
nodes. This means that only leaf nodes that are selected as MPN are evaluated
with a second level search.

2.6.3 Second Level

The second-level search starts with the MPN of the first level as its root. In this
procedure, the size of the second level search is constrained by the size of the
first level search tree. The initial approach to determine the second-level size
was to restrain it to the size of the first level (Allis, 1994). Later, an approach
according to the logistic-growth model (Berkey, 1988) has been proposed with
a formula to determine the second level size (Breuker et al., 2001a):

f(x) = 1/(1 + ε(a−x)/b) (2.5)
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In this formula, x is the size of the first level search, a, b are hyper-parameters
that can be tuned.

2.6.4 PN2

The first two level PNS variant that has been proposed is PN2 (Allis, 1994).
The objective of PN2 is to reduce the memory required by PNS, as the entire
tree is stored in memory. The first level performs PNS to select a MPN, which
is evaluated with another PNS search on the second level. As an improvement,
the immediate children of the second-level root are added to PNS search tree
on the first level (Breuker et al., 2001a).

2.6.5 PDS-PN

PDS-PN is a two-level search variant PDS on the first level and PNS on the
second level (Winands et al., 2002). PDS-PN profits from advantages of both
variants:

• PDS requires little memory

• PNS is fast

With a PDS search on the first level, the required memory to store the search
tree in memory is relatively low. The second level performs PNS, which is faster
than PDS, as it does not apply an iterative-deepening approach.

2.6.6 dfpn-pn

The concept of a two-level df-pn search was mentioned in van den Herik and
Winands (2008) and Kishimoto et al. (2012), however was not implemented and
tested in practice. Dfpn-pn is a two level search variant with a df-pn search on
the first level and PNS on the second level. The df-pn algorithm is defined in
a Negamax fashion (Kishimoto and Müller, 2004). Therefore, pn and dpn are
changed to the following notation:

n.φ =

{
n.pn if n is an OR node

n.dpn if n is an AND node
(2.6)

n.δ =

{
n.dpn if n is an OR node

n.pn if n is an AND node
(2.7)

Pseudo-code of dfpn-pn can be seen in Algorithms 1 and 2. Algorithm 1 de-
scribes the general procedure of df-pn, extending it with additional functionality
to carry out a second level search. The algorithm returns the value of the root.
n.φ and n.δ are initialized with ∞ at the root and the function MID is called
to perform multiple iterative deepening at nodes. MID (lines 10-33) traverses
the subtree of a node in a depth-first manner within thresholds. If a node cor-
responds to a terminal position, it is evaluated and stored in the transposition
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table (lines 11-14). The expansion procedure (lines 18-29) detects the best child
of a node, while keeping track of the second best child. In lines 25-27, the en-
hancements towards two-level df-pn is made, if the child has not been evaluated
before and is not in the transposition table, a PNS is performed on this child.
computeMaxNodes is a function to limit the number of nodes of the second level
search. Algorithm 2 contains utility functions that are used to determine the
best child of a node, SelectChild, and the functions ∆Min and ΦSum. Both
can be seen as equivalents of PNS, to determine the sum or minimum of pn
and dpn of child nodes. RetrieveProofAndDisproofNumbers and SaveProofAnd-
DisproofNumbers are functions that control the use of a transposition table.
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Algorithm 1 Pseudo-code of the dfpn-pn algorithm

1: function dfpn-pn(root)
2: root.φ←∞
3: root.δ ←∞
4: MID(root)
5: if root.δ ==∞ then
6: return proven
7: else
8: return disproven

9: // Perform search with thresholds
10: function MID(node)
11: if IsTerminal(node) then
12: Evaluate(node)
13: // store node
14: SafeProofAndDisproofNumbers(node,node.φ,node.δ)

15: GenerateMoves(node)
16: // Search within thresholds
17: while node.φ > ∆Min(node) and node.δ > ΦSum(node) do
18: Cbest ← SelectChild(node,φc,δ2)
19: // Update thresholds
20: Cbest.φ← node.δ + φc − ΦSum(node)
21: Cbest.δ ← min(N.φ, δ2 + 1)
22: // Extension for dfpn-pn
23: // Check whether node has not been searched before
24: if not RetrieveProofAndDisproofNumbers(Cbest,φ,δ) then
25: PN(Cbest,computeMaxNodes())
26: SafeProofAndDisproofNumbers(Cbest,Cbest.φ,Cbest.δ)
27: else
28: MID(Cbest)

29: // Store search results
30: node.φ← ∆Min(node)
31: node.δ ← ΦSum(node)
32: SafeProofAndDisproofNumbers(node,node.φ,node.δ)

13



Algorithm 2 Utility functions of dfpn-pn algorithm

33: function SelectChild(node,&φc,&δ2)
34: φc ←∞
35: δc ←∞
36: for for each child c of node do
37: RetrieveProofAndDisproofNumbers(c,φ,δ)
38: // Store smallest and second smallest δ
39: if δ < δc then
40: Cbest ← c
41: δ2 ← δc
42: φc ← φ
43: δc ← δ
44: else if δ < δ2 then
45: δ2 ← δ

46: if φ ==∞ then
47: return Cbest

48: return Cbest

49: // Compute smallest δ of node’s children
50: function ∆Min(node)
51: min←∞
52: for for each child c of node do
53: RetrieveProofAndDisproofNumbers(c,φ,δ)
54: min← min(min, δ)

55: return min
56: // Compute sum of φ of node’s children
57: function ΦSum(node)
58: sum← 0
59: for for each child c of node do
60: RetrieveProofAndDisproofNumbers(c,φ,δ)
61: sum← sum+ φ

62: return sum

2.7 Enhancements

To improve the performance of PNS and its variants, several enhancements
have been proposed. Their use ranges from memory reductions, speed-ups to a
guidance of the search procedure. A selection of variants is introduced in the
following.

2.7.1 Update Most Proving Node

Whenever new nodes are created and initialized in the search tree, parent nodes
are updated and a new is MPN selected. This procedure impacts the running
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time, as the tree has to be traversed whenever nodes are being added and
whenever a MPN is selected. A reduction of the traversal length reduces the
running time of the search. Allis et al. (1994) proposed a method that stops the
updating process of parent nodes as soon as pn and dpn remain unchanged. In
order to find the next MPN, one can start from the stopping point rather than
from the root, which reduces the number of nodes traversed.

2.7.2 Deleting Solved Subtrees

Nodes in a PNS search tree have three different values: they are either proven,
disproven or unknown. An enhancement to reduce the memory usage of PNS is
to delete the subtrees of proven and disproven nodes (Allis, 1994). The value of
a proven or disproven node will not change anymore. It is therefore not required
to keep the subtree in memory and it can be discarded to free memory.

2.7.3 Mobility

Rather than initializing pn and dpn with 1 for every node, a more elaborate
measure can be used. One method for this is to initialize nodes with the re-
sulting mobility (number of moves) (Allis, 1988). Using mobility for initializing
pn and dpn has the effect of performing a lookahead of one move, where every
child node gets initialized with pn and dpn of 1, and the sum is backpropagated
to the parent. OR nodes are initialized with pn = 1; dpn = n, AND nodes
are initialized with pn = n; dpn = 1, where n denotes the number of children
of the node. Initializing with mobility can achieve speed-up factors of 5-6 in
execution time (Winands and Uiterwijk, 2001). By using a different initializa-
tion method, one can achieve a tradeoff between speed-ups, due to fewer nodes
in the search tree and computational overhead to compute the new initializa-
tion method. This enhancement can be applied to domains with non-uniform
branching factor. The mobility enhancement is difficult to apply to games with
uniform branching factor, as nodes on the same depth remain with equal pn
and dpn, unless terminal positions are reached.

2.7.4 ε-trick

Iterative deepening PNS variants lead to reproductions of subtrees in the search.
The ε-trick (Pawlewicz and Lew, 2007) can be applied to reduce the number
of reproductions in PDS and df-pn in searching subtrees to a higher degree.
Thereby, more time is spent on exploring a subtree rather than alternating
subtrees more frequently. The alternation between subtrees is called see-saw
effect. The ε-trick can be applied to df-pn by changing the computation of
thresholds, as seen in Pawlewicz and Lew (2007), to the following:

pntc = min(pntn, pnc2 × (1 + ε)) (2.8)

dntc = min(dntn, dnc2 × (1 + ε)) (2.9)
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Similarly, the ε-trick can be applied to PDS. Whereas initially, bounds are com-
puted as follows:

pntc = pntc + 1 (2.10)

dntc = dntc + 1 (2.11)

ε-trick thresholds are:

pntc = pntc × (1 + ε) (2.12)

dntc = dntc × (1 + ε) (2.13)

ε is a real number greater than 0.

2.7.5 Monte-Carlo Evaluation

A combination of MCTS and PNS has been evaluated in Saito et al. (2006) for
the game of Go. The PNS procedure is followed, but rather than initializing pn
and dpn with unity, up to 20 Monte-Carlo evaluations have been executed to
create estimates.

2.8 Graph-History Interaction Problem

The Graph-History Interaction (GHI) problem occurs if the path (history of
played moves) is relevant for determining results of a game (Palay, 1985). Ig-
noring paths could result in an incorrect evaluation of game positions when
using transposition tables. An example for this can be seen in chess, where
a game results in a draw if the same position is reached for the third time.
Using a transposition table, one might store a loss to the respective positions,
even though the position is only a loss based on the chosen path, containing
3 repetitions. If the same position is reached from a different path, obtaining
“loss” from the transposition table would assign an incorrect value. Therefore,
to ensure correctness, the graph history cannot be ignored. Consider the ex-
ample given in Figure 2.4. Following the path [A,B,D, F ], if the next chosen
node is F , a repetition occurs. The game can be determined as a draw and
D and F are stored in a transposition table accordingly. If F is reached via
the path [A,C,E], the value is unknown. By using the stored draw, from the
transposition table, incorrect assumptions are being made, which outlines the
GHI problem. Naive approaches to dealing with the GHI problem include not
using transposition tables (Palay, 1985) or not storing or flagging information
for paths with cycles (Campbell, 1985). The first approach would lead to a gen-
eral loss of speed-ups that transposition tables offer, while the second approach
would only result in the loss of a few entries as the GHI problem “does occur
to appear infrequently” (Campbell, 1985). Kishimoto and Müller (2005) men-
tion that Tsume-shogi programs solve the GHI problem by not storing disproofs
with repetitions. Breuker et al. (2001b) propose an algorithm that flags possible
draws. Nodes are stored in a base node with potentially multiple twin nodes
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Figure 2.4: Example of the GHI problem.

of the same position reached from different paths. An implementation within
df-pn ignores nodes that result in repetitions by returning to the parent and
continuing the search (Nagai, 2001). The search result is ensured to not contain
any repetition. Kishimoto and Müller (2005) store two table entries for base
and twin, where the twin table contains the path to the node. When retriev-
ing information from the transposition table, paths are compared and potential
GHI problems detected. An experiment showed that this approach can solve
2 (out of 136) positions more than a solution ignoring the GHI problem entirely.

In the following, an approach according to Campbell (1985) is followed. Re-
quired repetitions for a draw are set to 2 for every game. An adjustment is done
in regards to the flagging of transposition table entries with repetitions. At
most two positions are flagged. If the node with repetition is an OR node, the
previous AND node is flagged as well, otherwise only the OR node is flagged.
In the example given in Figure 2.4, D and F would be flagged, to ensure that
other path are not retrieving incorrect values. We can assume that this approach
performs well due to the infrequency of GHI problems occurring.

2.9 Other Variants

While the aforementioned PNS variants are the most popular and well-known,
other variants have been create during the course of the last years. A selection
of those are outlined briefly.
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2.9.1 PDS* and df-pn+

PDS* is an extension to PDS, which incorporates additional information at
nodes (Nagai, 1999). PDS* aims at distinguishing promising variants and search
them deeper. Therefore, additional information is added to nodes:

• cost(n, nchild): effort from node n to a child node nchild

• h(n): estimated effort to reach a solution from node n

The same extension was applied to df-pn, with the name df-pn+ (Nagai and
Imai, 1999).

2.9.2 Focused df-pn

Focused df-pn (FDPFN) is an extension to df-pn that focuses search effort on
strong moves (Henderson, 2010). Instead of solving every sibling, including weak
and strong moves, a heuristic method is applied to rank nodes and only strong
moves are being considered at first. The number of children considered is bound
by a fixed proportion. This reduces the branching factor of search trees.

2.9.3 Deep df-pn

Deep df-pn is a df-pn variant that aims at reducing the seesaw effect (Zhang
et al., 2017). Instead of initializing pn and dpn with 1, they are being set by a
function regarding their depth. Adjustments of parameters allow for changing
between a broad search to a deeper search.

2.9.4 Parallel Search

The ability to solve larger problems, or to solve problems with shorter computa-
tion times can be improved by incorporating multiple processors and performing
PNS in parallel. Examples for a parallel PNS algorithm are randomized parallel
Proof-Number Search (RPPNS) (Saito et al., 2010) and job-level Proof-Number
Search (JL-PNS) (Wu et al., 2011).

18



Chapter 3

Game Domains

This chapter describes board games in general, considering properties and mea-
sures of complexity. Section 3.1 gives a definition of relevant terms in game
playing, putting emphasis on solvability and complexity. The following sections
introduce the four games analyzed in this thesis. This explanation begins with
Lines of Action (3.2), followed by Hex (3.3), Othello (3.4) and Connect6 (3.5).
Additionally, an overview of the state of the art in search for each game is given.

3.1 Terms and Definitions

This section gives a general overview of characteristics of board games. Prop-
erties are analyzed and solvability and complexity are considered in detail.

3.1.1 Properties

Properties can be used to classify games in order to decide on correct methods
to analyze them (Nijssen, 2013).

Number of Players. A vital property of games is the number of players. Of-
ten times, games are played by one or two players. Games with more than
two players are called multi-player games.

Outcome. The outcome of games indicates how winners and losers are deter-
mined. Based on the number of players, a multitude of winners and losers
can advance from a game. It can furthermore be distinguished between
competitive and cooperative games. In competitive games, players try
to win and therefore make their opponents lose. In cooperative games,
players have the same goal and achieve mutual outcomes. Competitive
two-player games are often treated as zero-sum games, where a win for
one player results in a loss for the other. Not every game has to end with
a winner. Those games include draws as a zero outcome, where no player
won but also no player lost.
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Information. If every bit of information in a game is available to every player
during the entirety of the game, it is called game with perfect-information.
Games with imperfect-information include aspects which are not known
to all players, such as a the order of cards in shuffled deck of cards.

Chance. Chance in games shows whether randomness is included. Determinis-
tic games do not include any elements of chance, whereas non-deterministic
do. An example for chance is the use of dice in a game to determine the
outcome of an action.

Flow. The flow of a game determines when moves are performed by players.
This can occur in a sequential manner, where a player moves individually
at a specified point of the game. Another option is for players to make
moves simultaneously.

Symmetry. Symmetry in games indicates whether players have the same goal
and try to achieve a win under identical conditions. In symmetric games,
each player follows the same goal, whereas player can pursue different
goals in asymmetric games.

Game domains considered in this thesis are deterministic, symmetric two-player,
zero-sum games with perfect information. Players alternate in turns to perform
moves.

3.1.2 Solvability

Solvability is a game property that determines the ability of creating strategies
to achieve the best game-theoretic outcome in a position (Allis, 1994). Three
different levels of solving games exist:

Ultra-weakly. The game-theoretic value of the initial position under exact
play is known. It is not required to know how to achieve the outcome.

Weakly. A strategy has been devised for the initial position to at least achieve
the game-theoretic value. It is not required to achieve a better outcome if
the chance arises.

Strongly. For every position, a strategy can be determined to achieve the game-
theoretic value of the position under exact play.

The state of solving of a game can help in determining the ability to solve
endgame positions or entire games.

3.1.3 Complexity

When it comes to solving games, the characteristic of complexity becomes rel-
evant. One has to know how many options have to be considered when taking
actions and how much storage could be required to store game trees in memory.
It is therefore of importance to consider two types of complexity spaces.
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State Space. The state space shows how many possible positions can be achieved
in a game.

Search Space. The search space complexity gives an intuition on the potential
size of search trees when searching a game. The shape is determined by
the search depth, the number of moves until the game terminates, and the
search width, the number of possible action in a given position.

Inspired by van den Herik et al. (2002), a characterisation in complexity allows
for an adequate choice of search methods, as indicated in Figure 3.1:
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Figure 3.1: Classification of state space and search space complexity. Search-
space complexity is increasing from left to right, state-space complexity is in-
creasing from bottom to top.

3.2 Lines of Action

Game Description. Lines of Action (LOA) is a two-player game played on
an 8× 8 board. Initially, each player starts with 12 pieces. The first player has
black pieces and the second player white pieces. Black pieces are placed on the
top and bottom row of the board, white pieces are placed on the leftmost and
rightmost columns. Corners of the board remain empty. The starting position of
LOA can be seen in Figure 3.2 (a). Both players alternate in moving one of their
pieces. Pieces can move in 8 directions, horizontally, vertically or diagonally.
The distance of a move is equal to the number of pieces of either color in the
line of movement. Pieces are allowed to jump over pieces of the same color, but
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not over pieces of a different color. If a piece is placed on top of a piece with
different color, this piece is captured and removed from the board. Pieces of the
same color are not allowed to be captured. Potential moves of a piece are shown
in Figure 3.2 (b). If a player is not able to perform a move, he passes his turn
and the other player continues. The game ends in a draw after two consecutive
passes. Additionally, the game ends when one of the players connected all of his
pieces to a unit, where the distance of each piece to the closest other piece is at
most one, as shown in Figure 3.2 (c). Connections can be formed in any of the
movement directions. A characteristic of LOA is, that both player can end the
game with the same move, by creating a connected unit of pieces each. This
results in a draw. Another terminal condition for LOA is a three-fold repetition
if the player to move has encountered the current position for the third time,
the game ends in a draw.

(a)

X X

X 1 X

X

(b)

(c)

Figure 3.2: (a) The initial posi-
tion of LOA. (b) Possible moves
of piece 1, marked with X. (c) A
terminal position, black wins.

State of the Art. The state space complexity of LOA is 1023 positions. In
general, positions have an average branching factor of 29 and the average game
length is 44 moves. The game-tree complexity is estimated to be around 1064

(Winands, 2004). Different PNS variants have been applied to solve endgame
positions in LOA, including PN2, PN* and PDS-PN (Winands et al., 2002).
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Engines for LOA have been designed that can play on an expert level (Winands
et al., 2004a). The LOA engine MIA1 uses a αβ depth-first iterative-deepening
search and Enhanced Realization Probability Search (Winands and Björnsson,
2007). At the time of writing, LOA is solved up to a board size of 6×6 (Winands,
2008).

3.3 Hex

Game Description. The game of Hex is a two-player game played on a
rhombic board with hexagonal fields. Hex was developed by Hein (1942) and
John Nash in 1948 (Nash, 1952). Hex is played on boards of various sizes,
ranging from 6×6 to 19×19. Each of the players in Hex gets assigned opposing
sides of the board, left-right and top-bottom. The goal of a player is to connect
his sides with a consecutive line of pieces. The player with black stones tries
to connect top to bottom, the player with white stones left to right. Pieces
can be connected to a consecutive line if they share an edge. Players alternate
in placing pieces on the board until one of them connects his sides and wins
the game, this can be seen in Figure 3.3. Unlike most games, Hex is proven to
have a winner, which means that there are no draws (Gale, 1979). Even though
board sizes can be chosen freely, edges of the board should have the same length,
otherwise there is an advantage for the player with sides of lesser length. Hex
applies the pie rule, which can also be referred to as swap rule. The pie rule is
applied in games where it can be shown that a first-move advantage exist. To
reduce the impact of having the first move, the second player can choose the
following, after the first move has been played:

1. Change places with the first player and continue the game from there

2. Play without any changes

Hex is ultra-weakly solved for any given board size.

Figure 3.3: Example of a terminal position in Hex with black winning on a 4×4
board.

State of the Art. An approach to solving Hex is to solve openings of one
move separately in order to solve an 8 × 8 board of Hex, one would have to

1https://dke.maastrichtuniversity.nl/m.winands/loa/
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solve for 32 different openings, based on symmetry. In 2000, Hex was strongly
solved on a 6 × 6 board (van Rijswijck, 2000) and later on an 8 × 8 board
(Henderson et al., 2009). In 2013, all 9× 9 openings have been solved with long
computations (Pawlewicz and Hayward, 2013). A variant of Hex, Reverse Hex
(Rex) (Gardner, 1957) has been used as an application for scalable parallel df-
pn (Young and Hayward, 2016). The PNS variant FDFPN was introduced for
Hex in (Henderson, 2010). It was later applied, using CNN estimations trained
from games by experts (Gao et al., 2017). This suggests that learning from
strong players can help for solving Hex positions. This resulted in solving all
Hex openings on an 8×8 board with 46.7% fewer node expansions. Other work
includes the use of df-pn for speed ups on search for boards up to a size of 9× 9
(Arneson et al., 2011).

3.4 Othello

Game Description. Othello is a two-player game played on an 8× 8 board.
Two players alternate in placing black and white stones on the board. In the
initial position, the 4 central fields are occupied with 2 pieces of each player.
This is illustrated in Figure 3.4 (a). The player with black stones starts the
game and places a piece on the board. Pieces are only allowed to be placed if
the player would capture at least one piece of the opponent. A capture occurs if
there are opponent pieces next to the placed piece and if there is a consecutive
line of pieces in which lies between two pieces of the current player. This results
in the captured pieces to change their color. If no such capturing move is
available, the player passes his turn. Allowed moves in the starting position can
be seen in Figure 3.4 (a). The game ends if the entire board is filled with pieces
or both players pass consecutively. When the game is finished, the number of
pieces of each color is being counted and the player with more pieces wins the
game. The game results in a draw if both players have the same number of
pieces. Figure 3.4 (b) illustrates a potential terminal position, where the black
player wins.

State of the Art. The state space of Othello has been estimated to at most
1028 with a tree complexity of approximately 1058 (Allis, 1994). Othello has
been used to test df-pn when it was first proposed by Nagai (1999). Later
on, records of Othello games have been used to train df-pn+ (Nagai and Imai,
1999). The use of a mobility enhancement can be problematic in Othello, due
to additional computations (Buro, 1997).

3.5 Connect6

Game Description. Connect6 is a connect-k type board game. In those, two
players compete against each other in trying to connect k pieces in an orthogonal
or diagonal without any empty fields in between. The first player to achieve this
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X

X

X

(a) (b)

Figure 3.4: (a) The initial position of Othello, possible moves for black are
marked with X. (b) Terminal position in Othello, black wins with 42 pieces over
white with 22 pieces.

wins the game. In general, Connect6 is played on 19× 19 boards, however any
board size can be chosen with at least 6 rows and columns. A terminal position
is illustrated in Figure 3.5 (b). In Connect6, players alternate in placing their
stones on the board until the terminal condition of connecting 6 stones in a row
is reached or the board is entirely filled with stones. If the board is filled with
stones and neither of the two players connected 6 stones, the game ends in a
draw. The game begins with the first player to place one stone on the board.
In every following turn, two pieces are placed on empty fields. This strategy
allows for a reduction of the first-move advantage. A possible position after the
first 2 moves is shown in Figure 3.5 (a).

(a)

X

X

X

X

X

X

(b)

Figure 3.5: (a) Example opening of Connect6 on an 8× 8 board. (b) Terminal
position in Connect, black wins with 6 connected pieces, marked with X.

25



State of the Art. Connect6 is a game with a high complexity. The state space
complexity is 10172, almost as high as in Go (Wu et al., 2005). The search space
complexity is 10140 (van den Herik et al., 2002), with an average game depth of
30 (Wu et al., 2005). Positions for solving Connect6 range from openings with
few stones (Wu et al., 2011), openings on a 7× 7 board (Gao and Xu, 2016), to
endgame positions. Some approaches create their own positions to solve (Zhang
et al., 2017; Xu et al., 2009), while others use publicly available Connect6 puzzles
(Yen and Yang, 2010). Approaches to solve Connect6 positions include deep df-
pn (Zhang et al., 2017) and job-level PNS (Wu et al., 2011). A common strategy
when it comes to playing Connect6 is to apply threats (Wu and Huang, 2006; Xu
et al., 2009; Yen and Yang, 2010). Furthermore, it is mentioned that initializing
pn and dpn with unity is not the best choice when it comes to solving endgame
positions (Xu et al., 2009).
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Chapter 4

Machine Learning

This chapter outlines different concepts of machine learning. Firstly, an intro-
duction to machine learning and different learning disciplines is given in Section
4.1. Artificial neural networks are explained in Section 4.2 and convolutional
neural networks in Section 4.3. Section 4.4 concludes with an overview on the
application of machine learning methods in games.

4.1 Introduction to Machine Learning

Machine learning is the study of models that learn to solve tasks without explicit
commands and algorithms. Machine learning can be applied when problems are
too complex to construct definite rules to solve them. Models are built using
training data to make predictions on unseen data. Data in the training process
can either be labeled or unlabeled. With labeled data, input data is matched
with a corresponding output. Unlabeled data does not contain any output-
information. Based on the type of training data, machine learning occurs in
different forms:

Supervised. Labeled data exists. Given the input data, models are trained to
replicate the output.

Semi-supervised. A small set of labeled data can be used in combination
with a large set of unlabeled data. Labeled data is used to predict labels
of unlabeled data to improve the performance of the model by utilizing
more data.

Unsupervised. Only data without labels is used for training. An application
for unsupervised learning is clustering. With easily available processing
power, larger machine learning models became more popular, introducing
deep learning as a subfield of machine learning.
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4.1.1 Reinforcement Learning

Reinforcement learning is used to train an agent with desired behaviour by
giving rewards (Kaelbling et al., 1996). The goal of an agent is to behave
accordingly, to maximize its rewards. Problems are reformulated to an envi-
ronment with observable states. States can be changed by performing actions.
Rewards are associated with the combination of states and actions performed.
In order to solve reinforcement learning problems, one can attempt to solve it
with known actions and behavioural patterns. Another approach is to estimate
the reward of unknown states and actions to solve problems. Depending on the
environment, agents are either able to explore it themselves to generate training
data or the training data is provided beforehand.

4.1.2 Tasks

Machine learning methods can be applied to several tasks. To solve those op-
timally, a proper output function has to be chosen. A distinction can be made
between the following tasks:

Regression. Regression models learn a function that approximates a real val-
ued prediction.

Classification. Given a set of classes, predictions are made on which class a
data sample belongs to. Often, a Softmax (Bishop, 2006) is applied to normalize
all class estimates within the range [0, 1], summing to 1.

Preference. Another task is to consider preferences. In a preference ranking
model, preference relations are being predicted (Fürnkranz and Hüllermeier,
2010). This invokes the prediction of more complex structures and allows for
an increased flexibility.

4.2 Artificial Neural Network

Artificial neural networks (ANN) are models that estimate non-linear functions.
ANNs can be compared to the human brain, as the brain consists of a multitude
of connected neurons and ANNs of connected nodes. Nodes are structured in
layers which are connected. An input is parsed to a layer, each node computes
an output value and passes it to the next layer. This process is followed until
the output layer is reached and final predictions are made. A visualization of
connected layers can be seen in Figure 4.1. Every layer that is neither an input
or output layer is called hidden layer. Multiple hidden layers can be used in a
network. The computation in a node can be described as follows:

f(
∑

xi × wi) (4.1)
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Input layer Hidden layer Output layer

Figure 4.1: Example of an artificial neural network with 1 hidden layer.

Where f is an activation function, x is input passed on from nodes in the
previous layer and w represents the weight of each input. A single valued output
value is created per node. By following this procedure, any function can be
approximated. The approximation is done by tuning weights of the ANN in
order to reconstruct outputs given training input data.

4.3 Convolutional Neural Network

Convolutional neural networks (CNN) are a type of ANN, primarily applied
when dealing with pattern recognition in image related tasks. The CNN archi-
tecture allows to efficiently deal with images, multi-dimensional input vectors,
whereas ANNs would require a multitude of nodes and weights (O’Shea and
Nash, 2015). To deal with and process large input data, CNNs alternate be-
tween convolutions and subsampling (LeCun and Bengio, 1998).

4.3.1 Convolution

Convolution determines the activation of neurons. Kernels are applied to local
regions of the input by applying scalar multiplications. Kernels are applied in
a spatial domain, shifted over the entirety of the input. Applying convolution
to an input can end with a result with reduced size. Padding techniques can
be applied to extend the output to the input size. An example for a single
convolution is shown in Figure 4.2.
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Figure 4.2: Visualization of the convolution process. A kernel is placed over the
input vector and applies a weighted sum. Taken from O’Shea and Nash (2015).

4.3.2 Subsampling (Pooling)

Pooling is a subsampling technique to reduce the dimensionality of data. The
most common pooling technique is max pooling (O’Shea and Nash, 2015). Given
an excerpt of data points, they will be reduced to the maximum value among
those. This has the effect of reducing the complexity of proceeding computa-
tions. Furthermore, small details in the data are negligible and can be removed
by pooling.

4.4 Learning in Game Playing

A multitude of learning techniques have been introduced, which can be applied
in various domains, including game playing. A selection of learning techniques
applied to board games is given below, to enable an understanding of the oppor-
tunities learning has in board games. Reinforcement learning has been applied
to multiple games such as Othello (van der Ree and Wiering, 2013), Connect4
and Tic-Tac-Toe (Imran, 2004). Reinforcement learning models can be trained
from game records or by self-play. Runarsson and Lucas (2014) apply prefer-
ence learning in Othello, using game records for training. A combination of
reinforcement learning and neural networks can be seen in deep reinforcement
learning, which has been applied to games such as Hex (Young et al., 2016). A
comprehensive example for applying learning techniques in board games can be
found in AlphaGo (Silver et al., 2016). Deep reinforcement learning has been
performed with CNNs, using expert games for training. Additionally, training
data has been created from self-play. Later on, trained networks have been used
to predict values as a regression task, to guide MCTS.
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Chapter 5

Proof and Disproof Number
Estimation

In this chapter, three enhancements for PNS are introduced and investigated
in their ability to estimate pn and dpn. Section 5.1 outlines two enhancement
based on moves from expert games. Section 5.2 introduces a deep learning
model to predict pn and dpn based on board positions. The objective is to
create enhancements that can be used independent of game domains.

5.1 Move Frequency and Availability

The first approach for estimating pn and dpn is to analyze expert games for
common moves that are played over multiple games. Assuming that a move
is played in every game would lead to the conclusion that it is important for
winning games and should therefore receive a lower pn or dpn. Likewise, if a
move is rarely played, one can assume that it is not good leading to a higher
estimate. Another interpretation is to consider how frequent moves have been
played, given that they are available. The goal of the second approach is to
assess less frequent moves more accurately.

5.1.1 Data

Game notations of high-level play are analyzed, this includes either expert games
or games of engines. Games are processed, keeping track of each move that has
been played. This results in a mapping of moves to their frequency of being
played in games (Formula 5.1), or their availability (Formula 5.2). Moves are
scored according to their frequency:

scorefrequency = f/n (5.1)

scoreavailablity = f/a (5.2)
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f denotes the frequency of a move occuring, n the total number of games and
a the total number of positions in which a move is available. Scores are ceiled
at 1. Each score is in a range of [0 − 1], with frequent moves having a higher
score. High scores should lead to lower pn and dpn estimates, as all estimates
should be ≥ 1. A method to transform scores to pn and dpn is as follows:

estimate = 1/score (5.3)

In order to further weight moves, a hyper-parameter k is introduced:

estimate = 1/scorek (5.4)

Unseen moves are assigned with an estimate of 0.5/n when considering fre-
quency and an estimate of 1 when considering availability. As positions that
are supposed to be solved are rarely found within the first few moves (opening),
one could skip opening moves for computing scores.

5.1.2 Implementation

This method is used to initialize pn and dpn as follows: OR nodes are ini-
tialized with pn = 1; dpn = 1/scorek, AND nodes are initialized to pn =
1/scorek; dpn = 1. Therefore, each node has to store the last executed move,
which is used to determine the score. All nodes except for the root are initialized
in this way.

5.2 Deep Learning

Deep learning with CNNs can be applied to board positions in games in order
to make predictions. In the following, the use of CNNs to determine pn and
dpn is evaluated.

5.2.1 Data

The same set of expert games from Section 5.1 is used to generate training data
for a CNN. Each game is processed and the result at the end of the game is
determined. This data alone allows for the prediction of the result of a board
position. In order to ascertain realistic pn and dpn it is not only of interest who
wins the game, but also how many moves are required to reach the end of the
game. This information can be added to every board position by subtracting the
current move from the total number of moves of a game. Given these estimates,
the potential number of nodes required to solve a subtree can be estimated.
Therefore, tuples of the following form are extracted from games:

(board,moves, winner)

Frequently, games carry characteristics of symmetry, which allows for data aug-
mentation techniques applied to generate more data. An overview of the applied
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augmentation techniques per game can be seen in Appendix C. After augmen-
tation, the available data is described in Table 5.1.

Games Black wins White wins Draw Unique tuples
LOA 32,672 19,508 11,720 1,444 1,392,894
Hex 56,860 44,730 12,130 0 305,458
Othello 124,219 56,233 60,599 7,387 1,209,773
Connect6 30,219 13,709 16,510 0 156,242

Table 5.1: Description of training data for deep learning after applying augmen-
tation.

It is noted that, although draws are possible in Connect6, they do not occur in
any of the recorded games. Therefore, the outcome of Hex and Connect6 games
predicts either a win for black or white, whereas a win for black or white or a
draw is predicted for LOA and Othello.

5.2.2 Input

Each board position is preprocessed to extract three feature layers, which are
fed into the CNN. Similar to Silver et al. (2016), a one-hot encoding of layers is
used. The following layers are being extracted:

1. Black: Layer with 1 for black pieces and 0 otherwise

2. White: Layer with 1 for white pieces and 0 otherwise

3. Empty: Layer with 1 for empty spaces and 0 otherwise

Preprocessing is applied to 8× 8 and 19× 19 boards in the same manner. This
resembles a minimum of information that can be extracted from a game, which
allows this approach to be applied to various different game domains. Other
approaches include information about the current player to move (Silver et al.,
2017; Liskowski et al., 2017; Hlynur Dav́ı, 2017; Gao et al., 2018), which was
disregarded in order to keep the network as simple as possible.

5.2.3 Core

Following model is inspired by Gao et al. (2018) used for Hex and Liskowski
et al. (2017) for Othello. The input is processed by various, consecutive convo-
lutional layers, that all apply a ReLU1 activation function. The following four
architectures are trained for games with a board size of 8× 8:

1Rectified Linear Unit: f(x) = max(0, x)
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NW1 128→ 128→ 128→ 128→ 128→ 128→ 128
NW2 128→ 128→ 128→ 128→ 128→ 128→ 128→ 128
NW3 64→ 64→ 128→ 128→ 256→ 256
NW4 64→ 64→ 128→ 128→ 256→ 256→ 256→ 256

Table 5.2: Description of 4 network models for 8 × 8 board games. Nodes of
consecutive convolutional layers are given.

For a board size of 8×8, filters of the size (3, 3) and a stride of 1 are used. CNNs
have not been applied to Connect6 before, nonetheless CNNs have been applied
to Go with 19 × 19 boards. A characteristic that can be seen in Barratt and
Pan (2017), is the use of larger filter sizes. These four architectures for 19× 19
boards are trained:

NW1 128(5)→ 128(5)→ 128(5)→ 128(3)→ 128(3)→ 128(3)→ 128(3)
NW2 128(7)→ 128(5)→ 128(5)→ 128(3)→ 128(3)→ 128(3)→ 128(3)
NW3 64(7)→ 64(5)→ 128(5)→ 128(5)→ 256(3)→ 256(3)→ 256(3)→ 256(3)
NW4 64(5)→ 64(5)→ 128(5)→ 128(5)→ 256(3)→ 256(3)→ 256(3)→ 256(3)

Table 5.3: Description of 4 network models for 19× 19 board games. Nodes of
consecutive convolutional layers are given with filter size in braces.

As different sizes of layers are used, the respective filter size for each layer is
denoted in brackets. After each convolutional layer, zero-padding is applied to
remain with data of the same dimensionality. The dimensionality of the input is
small, which gives no reason to apply any pooling in the network (Springenberg
et al., 2014). Every convolutional layer applies a RelU activation function.

5.2.4 Output

The CNN is used to generate two outputs. Firstly, the outcome of the game is
predicted. This is either a binary classification, if no draws occur in the game
domain, or tertiary, if draws are possible. Secondly, the number of moves re-
quired to reach a terminal position is predicted. This two-fold output carries
similarities to the network in Silver et al. (2017), where outcome and a scoring
of moves is predicted. Table 5.4 lists the appended layers to predict the out-
come and the required number of moves until the game is finished: A complete
network model is illustrated in Figure 5.1.

5.2.5 Training

The network is trained with a batch size of 256 over 20 epochs. Stochastic
gradient descent is applied for optimization, with a learning rate of 0.1. Both
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Board Position (8x8x3)

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256

3x3 conv, 256

1x1 conv, 1

flatten, 64

fully connected, 20

softmax, 2

1x1 conv, 1

flatten, 64

fully connected, 20

sigmoid, 1

Outcome Moves

Figure 5.1: Example of a network model for 8× 8 board games. Game has two
results (win and loss).
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Outcome Moves
Convolution (1,1) Convolution (1,1)
Flatten Flatten
Dense (20 Nodes, RelU) Dense (20 Nodes, RelU)
Softmax (2 or 3 Nodes) Dense (1 Node, Sigmoid)

Table 5.4: Descriptions of Layer that predict Outcome and Number of Moves
until a terminal position is reached.

outputs, outcome and distance, are weighted with 50% to determine the loss
of an epoch. Mean squared error is applied to determine the distance loss;
categorical cross-entropy is applied to determine the outcome loss. 90% of the
data is used for training and 10% for testing. Models are trained on a single
NVIDIA Tesla P100 SXM2 with 32 Gb of memory.
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Chapter 6

Experiments

In this chapter, several experiments are conducted. At first, the experimental
setup is explained in Section 6.1, followed by an outline of the data used in
Section 6.2. This includes a selection of expert games and positions for each of
the four game domains. Following, a multitude of experiments are conducted.
Firstly, the base performance of PNS variants is evaluated (Section 6.3) followed
by an evaluation of the move frequency and availability enhancements (Section
6.4). The training process of deep learning models is described in Section 6.5,
where the best performing model is selected and applied to positions (Section
6.6). An application of enhancements on LOA with a smaller board size, of 5×5
is performed in Section 6.7. Lastly, Section 6.8 discusses results.

6.1 Experimental Setup

Experiments are conducted on the games LOA, Hex, Othello and Connect6.
The following PNS variants are applied to each game:

• PNS

• PNS + mobility

• PN*

• PDS

• df-pn

• PN2

• PDS-PN

• dfpn-pn
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Hereby, PNS with mobility enhancement is only applied to LOA due to the
branching factor of Othello, Hex and Connect6. For PNS, solved subtrees
are deleted. Both PDS and df-pn are applied with ε-trick. Corresponding to
Pawlewicz and Lew (2007), ε = 1/16 in PDS and ε = 1/4 in df-pn. Transpo-
sition tables are used with a Two-Big replacement scheme; hashes are created
with Zobrist hashing (Zobrist, 1970). In two-level searches, the size of the sec-
ond level will be set to min(totalmemory − sizefirst-level, sizefirst-level + 1).

This ensures that a minimum of two nodes are explored at every second level
evaluation. Therefore, in every case, the second level root is extended with
children. Finally, memory constraints are set to keep a maximum of 1 million
nodes in memory and a maximum of 500 million node evaluations are allowed
to be performed.

6.2 Data

In the following the gathering of data is outlined for each game domain. This
includes end game positions as well as notations of played games. The game
notations are later used to extract information about the frequency of played
moves and to train deep learning models.

6.2.1 Lines of Action

Positions. A set of 488 positions was gathered from Mark Winands’ home-
page1. This set includes tactical endgame positions that have been used to test
endgame solvers.

Games. A set of 8, 168 LOA games is used. Games were created with two
engines playing against each other. Both engines apply MCTS (Winands and
Björnsson, 2010).

6.2.2 Hex

Positions. Solving algorithms for Hex are applied to the starting position.
On an empty board, every first move is being analyzed. When choosing a board
size, two factors have to be considered. Firstly, the board has to be large enough
to be challenging to solve. Secondly, the board has to be small enough to be
solvable within reasonable time and memory constraints. For this purpose, a
board size of 8× 8 is chosen. Previous work solved some openings, using df-pn,
with less than 50, 000 nodes in memory (Gao et al., 2017). 32 out of the 64
openings are analyzed. In the case that openings are too complex too solved
within constraints of the experiments, a set of 20 endgame positions has been
created. These positions are verified to be solvable by at least one of the PNS
variants. The endgame positions are described in Appendix B.

1https://dke.maastrichtuniversity.nl/m.winands/loa/
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Games. A set of games, used in Gao et al. (2017) for an 8× 8 Hex board, is
used. Games have been created with an engine that has played against itself.
This set includes a total of 50, 795 games.

6.2.3 Othello

Positions. A set of 20 Othello puzzles made by Marc Tastet, former Othello
world champion in 1992, can be found online.2 For every puzzle, the best result
is known, however the player to move is not winning in all of the positions. For
experiments, it is not intended to find the best score, but only the winning side
of a position.

Games. Games have been obtained from the French Othello Association.3

This includes a total of 124, 219 game records, played from 1977 to 2018. Game
records can be retrieved in the wthor format; a Python reader is provided on
Github.4

6.2.4 Connect6

Positions. The Taiwanese Connect6 association5 provides a collection of puz-
zles online. Yen and Yang (2010b) covered 30 problems from the year 2008.
The set of 30 problems is used for experiments. It is noted that a total of 201
puzzles are available by the time of writing.

Games. Up to this point, no set of Connect6 games was publicly available,
however well performing engines can be found. In order to create games in self-
play, the engine Cloudict6, first place in the 16th Computer Olympiad 2011,
is used. Cloudict uses an alpha-beta search with further enhancements. All
enhancements are being used and a search depth of 5 is applied. As alpha-beta
search is deterministic, every played game would look identical. To prevent this,
a random factor is added to the evaluation of positions. Every evaluation will
be multiplied with a random factor in the range [0.5, 2]. In total, 30, 219 games
have been created in this fashion.

2http://www.radagast.se/othello/ffotest.html
3http://www.ffothello.org/
4https://github.com/maxhort/WTB reader
5http://www.connect6.org/
6https://github.com/lang010/cloudict
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6.3 Base Performance

Lines of Action. In Table 6.1, it can be seen that timeouts occur for PDS,
df-pn and dfpn-pn. Timeouts happen if the execution time for solving a position
exceeds a day. This leads to the position to be considered as not solved. In addi-
tion to the number of positions solved by each variant, two sets of comparisons
are conducted. Firstly, one-level searches are compared on 81 positions, which
variants solve in common. Among those, PNS with mobility enhancements is
able to solve the positions the fastest, while df-pn requires the smallest num-
ber of evaluations. Two-level search variants are compared on 394, which each
variant is able to solve. Among two-level variants, PN2 requires the fewest num-
ber of nodes, followed by dfpn-pn. Despite a fewer number of nodes evaluated,
dfpn-pn requires the shortest time to solve all positions. PDS-PN is performing
worst among the three variants. PDS is significantly outperforming two-level
variants, reducing the number of evaluated nodes by a factor greater than 40
and execution time by a factor of approximately 4.

81 positions 394 positions
Variant Solved Timeouts Nodes Time in s Nodes Time in s
PNS 161 0 3,247,204 1,259 - -
PNS + mobility 366 0 349,940 432 - -
PN* 33 0 - - - -
PDS 415 4 349,193 1,215 16,624,894 59,090
df-pn 100 332 309,696 740 - -
PN2 459 0 - - 714,908,878 217,019
PDS-PN 459 0 - - 1,091,230,642 230,847
dfpn-pn 437 30 - - 829,789,778 186,230

Table 6.1: Comparison of nodes evaluated and execution time for PNS variants
on LOA positions.

A closer investigation on how variational and spread the number of nodes re-
quired to solve positions by the variants PDS, PN2, PDS-PN and dfpn-pn, is
done on the same set of 394 positions. Table 6.2 indicates that there is a corre-
lation between the total number of nodes required to solve all positions and the
standard deviation. As with nodes required, PDS has the lowest standard de-
viation followed by PN2, dfpn-pn and PDS-PN. Based on this, one can assume
that PDS-PN requires more nodes to solve the same set of positions, because it
is more variational in its performance.

Hex. At first, PNS variants have been applied on 32 openings for Hex on
8 × 8 boards. However, no variant was able to sole any of the openings under
the given constraints. Therefore, 20 self-created positions are evaluated.
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Variant Nodes Time in s Standard Deviation
PDS 16,624,894 59,090 65,193
PN2 714,908,878 217,019 6,469,113
PDS-PN 1,091,230,642 230,847 8,318,599
dfpn-pn 829,789,778 186,230 6,978,976

Table 6.2: Comparison of standard deviation for a selection of PNS variants.

10 positions 14 positions
Variant Solved Nodes Time in s Nodes Time in s
PNS 10 722,373 267 - -
PN* 10 291,352 409 - -
PDS 19 21,192 50 174,067 783
df-pn 17 23,813 57 341,059 1,474
PN2 20 - - 30,105,022 9,130
PDS-PN 18 - - 42,329,978 8,224
dfpn-pn 16 - - 43,118,777 7,660

Table 6.3: Comparison of nodes evaluated and execution time for PNS variants
on Hex positions.

Table 6.3 shows a comparison of the performance of PNS variants on 20 posi-
tions. PN2 is the only variant to solve all positions. One-level searches solve
10 positions in common. Among those variants, PNS and df-pn outperform
PNS and PN* by a large margin, while they only slightly deviate in terms of
nodes evaluated and time required. For two-level searches, PN2 requires ap-
proximately 25% less nodes than PDS-PN and dfpn-pn. However, the fastest
two-level variant is dfpn-pn. As can be seen in the comparison of two-level
variants, one-level variants solve the same set of positions quicker.

Othello. As can be seen in Table 6.4, only 5 positions from 20 can be solved at
all by two-level variants and only 2 positions by PNS and PN*. A comparison of
PNS variants in Table 6.4 shows that dfpn-pn is outperforming other two-level
search variants. PNS performs slightly better than PN*, however the problems
that are being solved are too small, to draw any further conclusions.

Connect6. None of the 30 Connect6 problems could be solved with the given
constraints. A further investigation of PNS variants on Connect6 is omitted.
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2 positions 5 positions
Variant Solved Nodes Time in s Nodes Time in s
PNS 2 394 0.148781 - -
PN* 2 181 1.368938 - -
PDS 0 - - - -
df-pn 0 - - - -
PN2 5 - - 47,552,042 17,363
PDS-PN 5 - - 43,529,984 19,984
dfpn-pn 5 - - 35,120,747 11,760

Table 6.4: Comparison of nodes evaluated and execution time for PNS variants
on Othello positions.

6.4 Move Frequency and Availability

In the following, the move frequency and availability enhancement proposed in
Section 5.1 is applied to LOA, Hex and Othello. For this purpose, PNS is used
as a base algorithm and enhanced to initialize pn and dpn,

Lines of Action. In Table 6.5, it can be seen that both the frequency and
availability enhancements achieve substantial reductions for nodes evaluated
and execution time. The biggest improvement is achieved by the availability
enhancement with k = 1 and skipping the first 10 moves. This reduces the
number of nodes evaluated and execution time by almost 90%. In general,
the availability enhancement performs better than the frequency enhancement.
Skipping the first 10 moves leads to small improvements.

51 positions 313 positions
Variant Solved Nodes Time in s Nodes Time in s
PNS 161 2,037,305 746 - -
PNS + mobility 366 311,292 346 8,003,300 9,693
PNS + frequency (k=1) 329 406,717 163 11,900,519 5,223
PNS + frequency (k=2) 132 1,346,887 640 - -
PNS + frequency10 (k=1) 321 422,280 162 10,566,240 3,906
PNS + frequency10 (k=2) 88 1,796,465 715 - -
PNS + availability (k=1) 358 266,206 109 8,638,133 3,178
PNS + availability (k=2) 149 1,751,443 669 - -
PNS + availability10 (k=1) 357 263,229 98 8,074,799 3,165
PNS + availability10 (k=2) 199 1,046,780 428 - -

Table 6.5: Comparison of nodes evaluated and execution time for move fre-
quency and availability enhancements on LOA positions.
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Variant Nodes Time in s Standard Deviation
PNS + mobility 8,003,300 9,693 38,806
PNS + frequency (k=1) 11,900,519 5,223 40,641
PNS + frequency10 (k=1) 10,566,240 3,906 36,791
PNS + availability (k=1) 8,638,133 3,178 37,085
PNS + availability (k=10) 8,074,799 3,165 35,471

Table 6.6: Comparison of standard deviation for PNS with enhancements.

The best performing variants from Table 6.5, that have been compared on 313
positions, are analyzed for their standard deviation. Table 6.6 shows the stan-
dard deviations of the 5 variants. Unlike the previous investigation on standard
deviations in Table 6.2, the order of magnitude of standard deviations is unlike
the order of magnitude of nodes required. The highest standard deviation is
achieved by PNS with frequency enhancement followed by PNS with mobility
enhancement. Based on nodes required alone, PNS with mobility enhancement
is performing the best. Even though PNS with mobility enhancement performs
with the least number of nodes required, it is impacted by a high variance. This
most likely shows that there is a subset of positions which PNS with mobility
enhancement can solve easily, while other variants cannot. The lowest stan-
dard deviation is achieved by PNS with availability enhancement, skipping the
first 10 moves. Skipping opening moves may indicate a reduction in standard
deviation, as it is the case for frequency and availability enhancement.

Hex. Table 6.7 shows a comparison of the frequency and availability enhance-
ment on Hex. It can be seen that skipping the first 10 moves leads to slight
improvements over considering all moves. The best performance is achieved by
the frequency enhancement with k = 2 and skipping the first 10 moves. Due to
the reason that every move in Hex is available, as long it has not been played
already, the availability enhancements transforms to an evaluation of how early
moves are being played.

Othello. Table 6.8 shows that no improvements are achieved by the availabil-
ity enhancement. The frequency enhancement was not applied, as it is common
for Othello, that every move is played once in a game, therefore not leading to
a deviation in scores for moves.
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9 positions
Variant Solved Nodes Time in s
PNS 10 693,949 258
PNS + frequency (k=1) 10 323,390 129
PNS + frequency (k=2) 10 162,608 77
PNS + frequency10 (k=1) 10 208,206 78
PNS + frequency10 (k=2) 10 92,597 35
PNS + availability (k=1) 13 156,392 54
PNS + availability (k=2) 5 - -
PNS + availability10 (k=1) 11 143,657 56
PNS + availability10 (k=2) 5 - -

Table 6.7: Comparison of nodes evaluated and execution time for move fre-
quency and availability enhancements on Hex positions.

2 positions
Variant Solved Nodes Time
PNS 2 394 1
PNS + availability (k=1) 2 10,220 9
PNS + availability (k=2) 2 150,704 93
PNS + availability10 (k=1) 2 47,210 37
PNS + availability10 (k=2) 2 173,764 106

Table 6.8: Comparison of nodes evaluated and execution time for move fre-
quency and availability enhancements on Othello positions.

6.5 Deep Learning - Training

In order to assess the performance of training networks on different games,
Figure 6.1 compares the training loss of the four network architectures, proposed
in Section 5.2, on each game. The performance of each network is evaluated on
the test set. The best performing network for LOA, Hex, Othello and Connect6
are (NW2, NW1, NW1, NW4) respectively. A detailed visualization of the loss
of both outputs on these networks is given in Appendix D. The training loss for
LOA, Hex and Othello remains fairly similar among all network architectures,
while they differ substantially for Connect6. It can be seen that networks with
a filter size of (7, 7) (NW2 and NW3) are outperformed by networks with a
smaller filter size of (5, 5). Furthermore, the overall loss of Hex and Connect6,
where no draw is possible, have a lower overall loss than Othello and LOA. A
reason for this can be seen in the fact that an output has to be predicted among
three options (win,loss,draw) rather than two. This is supported by Appendix
D, which shows that networks are able to predict the number of moves, until
a terminal position is reached, very accurately, while the outcome is prone to
more inaccuracies.
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Figure 6.1: Training loss of four different network architectures on each game.
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6.6 Deep Learning - Enhancement Performance

The best performing network found in Section 6.5 is used to initialize pn and
dpn on LOA, Hex and Othello positions. Therefore, the prediction output of
moves and outcome is used to compute an estimate for pn and dpn. As for the
mobility enhancement, the dpn is set to this estimate at OR nodes, and the pn
is set to this estimate at AND nodes. Formula 6.1 is used to calculate estimates,
where a, b, c are hyper-parameters that can be chosen.

estimate = a×movesb × (1/winnerc) (6.1)

The notion of winner is gathered from the outcome prediction. Assuming that
the first player is winning a given position, winner is equal to the prediction
that the outcome of the first player to win occurs.

Lines of Action. Table 6.9 shows that the deep learning enhancement can
be used to reduce the number of nodes evaluated, in contrast to plain PNS.
However, due to the amount of computations required to make a prediction, the
computation time increases at minimum by a factor of 40. The best performance
is achieved with the setting: a = 2; b = 1; c = 1. This reduces the number of
nodes evaluated by more than 80% in comparison to PNS and almost by 50% in
comparison to all other configurations of the deep learning enhancement. As the
deep learning enhancement reduces the number of nodes required, it is compared
to the frequency and availability enhancement in an upcoming section.

114 positions
Variant a b c Solved Nodes Time in s
PNS - - - 161 6,310,336 2,355
PNS + Deep Learning 1 0 1 165 5,828,078 265,118
PNS + Deep Learning 1 1 0 327 1,537,682 67,409
PNS + Deep Learning 1 1 0.5 322 1,499,188 90,443
PNS + Deep Learning 1 1 1 307 1,486,971 65,458
PNS + Deep Learning 1 1 2 297 1,455,198 71,229
PNS + Deep Learning 1 2 2 240 4,502,965 253,919
PNS + Deep Learning 2 1 1 343 890,299 45,926

Table 6.9: Comparison of nodes evaluated and execution time in seconds for
deep learning enhancements on LOA positions.

Hex. Similarly to LOA, all configurations of the deep learning enhancement
achieve reductions in the number of nodes evaluated over plain PNS (Table
6.10). The largest reduction is achieved with a setting of a = 2; b = 1; c = 1,
reducing by more than 50%. As with LOA, the computation time of the deep
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learning enhancement is severely higher than without. A comparison to the
frequency and availability enhancement is performed in an upcoming section.

8 positions
Variant a b c Solved Nodes Time in s
PNS - - - 10 604,877 227
PNS + Deep Learning 1 0 1 10 386,306 13,749
PNS + Deep Learning 1 1 0 9 439,625 19,267
PNS + Deep Learning 1 1 0.5 9 453,902 16,124
PNS + Deep Learning 1 1 1 9 477,126 16,804
PNS + Deep Learning 1 1 2 10 474,692 17,021
PNS + Deep Learning 1 2 2 9 552,179 19,837
PNS + Deep Learning 2 1 1 9 241,723 8,701

Table 6.10: Comparison of nodes evaluated and execution time in seconds for
deep learning enhancements on Hex positions.

Othello. As for the availability enhancement, no improvements have been
achieved with the deep learning enhancement in Othello, as can be seen in
Table 6.11.

1 Problem
Variant a b c Solved Nodes Time in s
PNS - - - 2 251 0.1
PNS + Deep Learning 1 0 1 0 - -
PNS + Deep Learning 1 1 0 0 - -
PNS + Deep Learning 1 1 0.5 0 - -
PNS + Deep Learning 1 1 1 0 - -
PNS + Deep Learning 1 1 2 0 - -
PNS + Deep Learning 1 2 2 0 - -
PNS + Deep Learning 2 1 1 1 12,319 1,192

Table 6.11: Comparison of nodes evaluated and execution time in seconds for
deep learning enhancements on Othello positions.
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6.7 Application to 5× 5 Lines of Action

Enhancements such as initializing pn and dpn with mobility are easily transfer-
able to different games and same games with different board sizes. The reason
for this is that the notion of mobility is adapted by the game. The question re-
mains whether the move frequency/availability and deep learning enhancements
are transferable. This assumption is tested on LOA with a 5× 5 board, and the
use of enhancements trained on 8× 8 games is evaluated.

LOA games on 8 × 8 boards are used to extract moves that could have been
played on a 5 × 5 board. Therefore, the board is divided into four areas of
the size 5 × 5 (see Figure 6.2). Every move that is played on the 8 × 8 board,
where the starting and end field of the moving piece remain in the same area,
is translated to a move on a 5× 5 board. Experiments with PN2 to solve 5× 5
LOA, show that the mobility enhancement solves with the fewest nodes evalu-
ated. The frequency enhancement achieves reductions of nodes evaluated of up
to 50%, while it remains slower than the mobility enhancement. The availabil-
ity enhancement achieves even further reduction, up to around 75% in contrast
to plain PN2. This does not outperform the mobility enhancement in terms of
evaluated nodes, but reduces the computation time by 40%. Additionally, a few
experiments have been conducted with the deep learning enhancement, however
none could achieve mentionable improvements over PN2. While the frequency
and availability enhancement achieved improvements on 5×5 LOA, deep learn-
ing enhancement could not achieve significant improvement over a plain PN2

search. A reason for this can be seen in the board positions, as it is unlikely to
achieve a position, such as the starting position in 5× 5 LOA at any given time
in 8 × 8 LOA. This results in a lack of training data for this particular case,
and predictions are made with a lack of knowledge. The winning move found
for 5× 5 LOA is B5−D2.

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

Figure 6.2: Division of an 8× 8 LOA board into four 5× 5 boards.
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Variant Nodes Time in s
PN2 7,823,893 225.08
PN2 + mobility 1,331,810 106.63
PN2 + frequency (k=0.5) 5,197,143 163.69
PN2 + frequency (k=1) 3,789,996 113.59
PN2 + frequency (k=2) 5,188,762 180.25
PN2 + availability (k=0.5) 2,010,575 62.97
PN2 + availability (k=1) 2,893,053 88.39
PN2 + availability (k=2) 7,235,441 257.05

Table 6.12: Comparison of PN2 to solve LOA on a 5× 5 board.

6.8 Results and Discussion

6.8.1 Lines of Action and Hex

The set LOA and Hex positions have proven to be suitable to use the fre-
quency/availability as well as deep learning enhancement. Therefore, a further
comparison of all enhancement among each other is conducted.

Lines of Action. Table 6.13 shows that the deep learning enhancement is not
able to reduce the number of nodes evaluated of the availability enhancement
and does so for the frequency enhancement. Overall, the availability enhance-
ment is solving 301 commonly solved positions the fastest, while requiring almost
as little nodes as the mobility enhancement.

152 positions 301 positions
Variant Solved Nodes Time in s Nodes Time in s
PNS 161 9,166,271 3,414 - -
PNS + Mobility 366 1,225,184 1,417 7,554,739 9,163
PNS + Frequency10 (k=1) 326 2,087,844 776 9,967,591 3,675
PNS + Availability10 (k=1) 357 1,289,007 509 7,585,166 2,962
PNS + Deep Learning (a=2,b=1,c=1) 343 1,649,471 82,161 9,871,856 487,400

Table 6.13: Comparison of nodes evaluated and execution time for search en-
hancements on LOA positions.

Hex. The deep learning enhancement in Hex is not able to outperform the
frequency and availability enhancement in any of the measures. The number of
nodes evaluated is larger by a factor of 2 − 3, while the computation time to
solve the same set of 9 problems is almost 300 times as large.
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9 positions
Variant Solved Nodes Time in s
PNS 10 693,949 258
PNS + Frequency10 (k=2) 10 92,597 35
PNS + Availability10 (k=1) 10 143,657 56
PNS + Deep Learning (a=2,b=1,c=1) 9 258,096 9,319

Table 6.14: Comparison of nodes evaluated and execution for search enhance-
ments on Hex positions.

Conclusion. Both LOA and Hex positions show that the frequency and avail-
ability enhancement can be applied to achieve reductions in both nodes evalu-
ated and time required. While the deep learning enhancement achieves reduc-
tions in nodes evaluated, it does not perform as well as the other two enhance-
ments and requires more time to solve the same number of positions.

Overall, three well performing enhancements, applicable to multiple games have
been proposed. The actual performance is highly impacted by design choices.
It is therefore difficult to draw a conclusion on which enhancement reduces the
number of evaluated nodes the most, however if the goal is to reduce compu-
tation time, frequency and availability enhancements are preferred over a deep
learning enhancement.

6.8.2 Othello and Connect6

In contrast to LOA and Hex, Othello and Connect6 positions show to be more
difficult to apply PNS to. Ideas for reasons behind this are given in the following.

Othello. Even though PNS variants are able to solve 5 out of 20 Othello
positions, no improvements are achieved by any of the enhancements. The
amount of experiments does not allow for explicit reasons to be drawn for this,
nonetheless one can assume that the rules of Othello impact the performance
of PNS. Firstly, games are played until the board is filled and the winner is
decided thereafter. This characteristic prevents PNS from focusing on narrow
search paths. Every path in Othello has to be searched until the board is filled,
furthermore Othello has a branching factor that is not related to any notion of
winning or losing. Whereas a small branching factor in LOA indicates fewer
options to move, which remains until the end of the game, a small branching
factor does not give an indication of following branching factors along the same
path.

Connect6. As illustrated in Section 3.1, the ability to solve game positions
depends on the state space and search space complexity of the game. With
the high complexity of Connect6 (Section 3.5), PNS variants are not able to
solve any of the given Connect6 positions. This could only be circumvented
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by adapting the PNS algorithm, in particular the generation of children nodes.
Without changes there are up to 380 × 379 = 144020 potential moves in a
given position. Creating all children nodes quickly leads to an exceedance of
experiment constraints.

6.8.3 Deep Learning

Deep learning has shown to be advantageous for LOA and Hex, when it comes
to reducing the number of nodes evaluated. The base for this performance orig-
inates from the training process. Networks are successfully trained on boards
with size 8 × 8 and 19 × 19. The prediction of remaining moves until a ter-
minal position is reached has shown to be more accurately to predict than the
outcome. Over all games, the number of moves is predicted with an error of
approximately one move, at the end of the training process.

The outcome of the games is predicted with high accuracy (80% − 90%) in
Hex and Connect6. Both of these games carry similarities when it comes to
winning the game; a consecutive line of pieces has to be connected, which seems
to be predictable by the networks. The sequential placing of pieces on the board
shows which player is about to make the next move, which is an important as-
pect of predicting the winner of a game. The same can be concluded from an
Othello position, as one piece is placed every move. Based on the design choice
to keep the network as simple as possible and not include the player who has
to move, it cannot be concluded with certainty which player is about to make a
move in a LOA position. This can be one reason why the prediction of the out-
come is less accurate on LOA. The prediction of the outcome of Othello games
shows to be less accurate as well. This could be owing to the nature of Othello,
as the winner is decided after the board is entirely filled, leading to long-term
dependencies.

A deficit of using the deep learning enhancement is an increased execution time
to solve positions. An increase by a factor of 20 in LOA and 40 in Hex can be
witnessed. Two reasons can be given for this. Firstly, making predictions with
a neural network is more computationally complex than initializing pn and dpn
with 1. Secondly, additional computational overhead is required to process infor-
mation of the current position such that it can be used in the neural network.
Using a more efficient programming language than Python for implementing
experiments could reduce the overhead of preprocessing board information.
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Chapter 7

Conclusion

This chapter concludes the thesis. The three research questions as well as the
problem statement established in Chapter 1 are discussed by reviewing results
obtained in previous chapters. Concluding, proposals for future research are
given.

7.1 Research Questions

In the following, the three research questions proposed in Section 1.4 are ad-
dressed.

1. How do the different PNS variants perform?

Experiments show that regular PNS requires the most nodes evaluated for solv-
ing positions, followed by PN*. Nonetheless PNS is has a faster execution time
than PN*. PDS and df-pn are the best performing one-level searches. In LOA,
df-pn performs slightly better than PDS; in Hex, PDS performs slightly better
than df-pn. Kishimoto et al. (2012) claimed that dfpn-pn “probably replace
PDS-PN in domains where PDS-PN is preferable to df-pn and PN2”. This
shows, that dfpn-pn can be used to achieve improvements over other PNS vari-
ants. Experiments show, that dfpn-pn reduces the number of nodes searched
in LOA. dfpn-pn has the fastest running-time in LOA, Hex and Othello among
all two-level variants. This shows, that with dfpn-pn, an improvement in PNS
has been achieved in regards to the running time. An improvement in regards
to the number of nodes evaluated can be seen in LOA.

2. How can proof and disproof number of leaf nodes be initialized
to improve the search procedure, independent of game domain?

Expert games are used as a base to a scoring method to initializing pn and dpn.
The first approach is to analyze move performed in each game. This can be
used to either count the frequency of how often moves are played in regards to
the number of games, or the frequency of moves played in regards to them being
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available in a position. Both of these enhancements achieve reductions in the
number of nodes searched in PNS for the games LOA and Hex. The move avail-
ability enhancement outperform the mobility enhancement in LOA, in terms of
execution time by a factor of 3, while evaluating a comparable number of nodes.
It furthermore allows for a speedup for solving Hex problems, where a mobility
enhancement is not applicable. Interestingly, the proposed enhancement do not
only lead to improvements in their specific game domain, but also for LOA on
a smaller board. Both, frequency and availability enhancement can logically be
applied to all of the four games, except for the frequency enhancement for Oth-
ello. This is show that a combination of both is broadly applicable, in contrast
to the mobility enhancement which could be applied to LOA.

3. Can deep learning be used to improve the search procedure by
initializing proof and disproof number of leaf nodes?

Experiments show that deep learning methods reduce the number of nodes eval-
uated in LOA and Hex. This is done by processing board positions and esti-
mating the winner of the current position and the number of moves required
to reach the terminal position. These two factors are used to calculate pn and
dpn predictions. The deep learning enhancement has achieved improvements by
reducing the number of nodes evaluated in LOA and Hex. In LOA, the number
of nodes evaluated is reduced by 80% and in Hex by 50%. While the number of
nodes evaluated decreases, the execution time increases by a factor of 20 in LOA
and 40 in Hex. This shows that that deep learning can be used to improve the
search by reducing the number of nodes evaluated with a trade-off of increasing
the execution time.

7.2 Problem Statement

The problem statement of this thesis was defined in Section 1.4 as follows:

How to improve Proof-Number search for two-player board games?

An improvement of PNS has been investigated with two different approaches, by
search variants and search enhancements. The newly proposed search variant
two-level df-pn has shown to reduce the processing time among two-level search
variants over the games LOA, Hex and Othello. The frequency and availability
enhancement can easily be applied to various game domains to achieve improve-
ment, as shown for LOA and Hex. Both enhancements achieve reductions in
evaluated nodes and execution time. A deep learning enhancement is interesting
reducing the number of evaluated nodes. However, it is inferior to frequency
and availability enhancements, based on higher execution times at the current
state.

7.3 Future Research

While improvements have been achieved in PNS, there are research opportu-

53



nities for to investigate proposed techniques in more depth or investigate new
ideas.

PNS variants, in particular two-level variants, carry variables that can be chosen,
which impact the search procedure. This includes the size of the second-level
search as well as the choice of ε. Further experiments could be conducted to
adjust those variables. For experiments in this thesis, their value has been fixed.
Accordingly, formulas have been proposed, in Section 5, to initialize pn and dpn.
An in-depth analysis of potential formulas could lead to a further improvement.

Rather than creating improvements for various games concurrently, research
could focus on individual games. On one hand, this can lead to specific neural
network models that are fine tuned for particular games. Those would not only
consider three input layers, which is a minimum of information gathered from a
board position, but can include domain specific knowledge such as the current
player to move. One the other hand, formulas to apply an initialization of pn
and dpn with move frequency/availability can be chosen more precisely.

Different games are also of interest, such as tsume-shogi Seo et al. (2001). In
tsume-shogi, different piece types occur. It would be interesting to evaluate the
performance of deep learning models on games with different piece types.

An open field of research in PNS is the use of three-level search. Three-level
search for games has been used in Allis (1988), however not with PNS. Allis
used a knowledge-based search on the first level, CNS on the second level and
depth first search on the third level to assess Connect4 positions. The created
codebase of this thesis, which is available on Github1 allows for a simple con-
catenation of layers and therefore the use of three-level search without the need
of further development.

1https://github.com/maxhort/ProofNumber-Search
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Appendix A

PNS-Pseudocode

Algorithm 3 Proof-Number Search with backpropagation enhancement - Part
1

1: function PNS(root)
2: Evaluate(root)
3: SetProofAndDisproofNumbers(root)
4: currentNode← root
5: while root.pn 6= 0 and root.dpn 6= 0 do
6: mostProving ←selectMostProvingNode(root)
7: ExpandNode(mostProving)
8: currentNode← UpdateAncestors(mostProving,root)

9: // Calculate proof and disproof numbers
10: function SetProofAndDisproofNumbers(node)
11: if node.expanded then // internal node
12: if node.type == AND then
13: node.pn←

∑
∀c∈node.children c.pn

14: node.dpn← min∀c∈node.children c.dpn
15: else // OR Node
16: node.pn← min∀c∈node.children c.pn
17: node.dpn←

∑
∀c∈node.children c.dpn

18: else // OR Node
19: if node.value == TRUE then
20: node.pn← 0
21: node.dpn←∞
22: else if node.value == FALSE then
23: node.pn←∞
24: node.dpn← 0
25: else // value UNKNOWN
26: node.pn← 0
27: node.dpn← 0
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Algorithm 4 Proof-Number Search with backpropagation enhancement - Part
2

28: function SelectMostProvingNode(node)
29: while node.expanded do
30: if node.type == AND then
31: node← arg min∀c∈node.children c.dpn
32: else // OR Node
33: node← arg min∀c∈node.children c.pn

34: return node
35: // Expand Node
36: function ExpandNode(node)
37: GenerateChildren(node)
38: for for each child c of node do
39: Evaluate(c)
40: SetProofAndDisproofNumbers(c)

41: node.expanded← true

42: // Update Ancestors
43: function UpdateAncestors(node,root)
44: do
45: oldPN ← node.pn
46: oldDPN ← node.dpn
47: SetProofAndDisproofNumbers(node)
48: if oldPN == node.pn and oldDPN == node.dpn then
49: return node
50: if node == root then
51: return node
52: node← node.parent
53: while true
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Appendix B

Endgame Positions Hex

Piece positions are given for each endgame position.

Position 1:

black = a1, f2, g2, e3, e4, f4, g4, d5, d6, f6, c7, f7, g7

white = f1, h1, d2, b3, f3, g3, e5, e6, g6, d7, b8, c8, e8

Position 2:

black = h1, c2, h2, b3, f3, h3, b4, d4, f4, b5, e5, f6, g6, a7, e7

white = d1, g1, b2, e2, g2, c3, g3, c4, g4, c5, d5, g5, d6, f7, g7

Position 3:

black = a1, c2, d2, f2, b3, e3, g3, a4, c4, d4, a5, d5, e5, f5, a6, c6, a7, c7, d7, a8

white = c1, d1, e1, b2, e2, c3, d3, b4, e4, f4, g4, b5, g5, b6, d6, e6, b7, b8, c8, d8

Position 4:

black = b2, e2, g2, b3, f3, c4, d4, d5, e5, a6, c6, a7, d7, a8

white = d2, f2, c3, d3, e3, b4, f4, c5, b6, d6, f6, b7, c7, b8

Position 5:

black = c2, a4, a5, b5, b6, c6, b7, b8

white = e1, b3, c3, b4, c5, h7, a8, c8

Position 6:

black = a2, g2, b3, b4, c4, d4, e4, f4, f5, d6, e6, c7

white = a1, c1, d2, c3, e3, f3, g3, c5, d5, e5, d8, g8
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Position 7:

black = c2, f2, d3, f3, c4, b5, d5, c6, c7, d7, e7, a8, e8

white = d2, e2, c3, e3, b4, d4, e4, d6, g6, b7, b8, c8, d8

Position 8:

black = f1, e2, b3, e3, c4, e4, d5, f5, c6, e7

white = d1, e1, g1, b2, d3, d6, e6, c7, b8, g8

Position 9:

black = d2, b3, b4, b5, d5, b6, c6, c7, e7

white = b2, e2, c3, d3, h3, c5, e6, b7, c8

Position 10:

black = d1, b4, c4, g4, d5, e5, g5, a6, c6, a7, f7, a8

white = e2, c3, f3, f4, f5, b6, d6, e6, b7, c7, b8, h8

Position 11:

black = h1, a2, c2, d2, e2, f2, a3, f3, g3, a4, c4, d4, e4, g4, a5, b5, f5, g5, a6, c6, g6, b7

white = c1, d1, e1, f1, g1, b2, g2, h2, b3, d3, e3, b4, f4, c5, d5, e5, b6, e6, f6, a7, f7, f8

Position 12:

black = c2, a3, c3, a4, c4, d4, e4, a5, d5, a6, a7, b7, d7, b8

white = b2, d2, g2, b3, d3, e3, b4, b5, c5, e5, c6, d6, c7, a8

Position 13:

black = b2, e2, g2, h2, d3, f3, h3, a4, c4, e4, f4, h4, c5, d5, h5, a6, e6, g6, a7, e7, f7, h7, a8, c8

white = g1, h1, f2, a3, c3, e3, g3, d4, g4, a5, b5, e5, f5, g5, b6, d6, f6, h6, b7, d7, b8, d8, e8, f8

Position 14:

black = c2, c3, f3, g3, c4, e4, b5, b6, b7

white = g1, e2, e3, h3, b4, c5, c6, d7, a8

Position 15:

black = b2, g2, b3, d3, e3, g3, a4, e4, g4, a5, e5, g5, a6, e6, a7, b7, e8

white = d1, c2, e2, f2, c3, f3, b4, f4, b5, d5, f5, b6, f6, d7, f7, a8, h8
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Position 16:

black = e1, b2, e2, f2, g2, h2, h3, a4, c4, f4, h4, c5, f5, h5, b6, d6, f6, h6, b7, d7, e7, f7, g7, h7

white = f1, g1, h1, d2, b3, d3, f3, g3, e4, g4, b5, d5, e5, g5, c6, e6, g6, c7, c8, d8, e8, f8, g8

Position 17:

black = f1, e2, f2, f3, f4, g4, f5, e6, f7

white = e1, g1, e3, g3, e5, h5, c7, e7, d8

Position 18:

black = a1, g1, b2, c2, d2, e2, g2, a3, c3, e3, h3, a4, c4, f4, h4, a5, c5, h5, a6, d6, a7, b7, c7, d7, e8

white = b1, c1, d1, e1, f1, h1, a2, f2, b3, d3, f3, b4, d4, b5, d5, e5, g5, b6, c6, e6, e7, a8, b8, c8

Position 19:

black = h1, h2, b3, d3, e3, h3, c4, h4, b5, d5, e5, f5, g5, b6, d6, b7, f7

white = g1, d2, e2, g2, c3, g3, b4, d4, e4, g4, c5, c6, e6, g6, c7, d8, e8

Position 20:

black = f1, e2, e3, f3, g3, g4, b5, d5, e5, f5, a6, c6, a7, e7, a8

white = e1, f2, g2, d3, c4, e4, f4, c5, b6, d6, e6, b7, d7, b8, g8
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Appendix C

Data Augmentation

C.1 LOA

LOA has three mirror axes that are used for augmenting data. Therefore, a
single position is transformed to four positions, with the initial position and
three mirrored positions. Given the position of a piece by (r, c) where r indicates
the row and c the column of the piece, the following mirror axes exist:

• horizontal: (9− r, c)

• vertical: (r, 9− c)

• diagonal: (9− r, 9− c)

Coordinates are given in the range of (1, 1)− (8, 8).

C.2 Hex

Hex has one mirror axis. Given an 8× 8 board the following mirror procedure
is applied to coordinates (r, c):

(r, c)− > (9− r, 9− c)

Without augmentation, there are 44, 730 games where black wins and 6, 065
where white wins. In order to reduce the imbalance in results, only games where
white wins are mirrored. This results in 12, 130 games with white winning after
augmentation.

C.3 Othello and Connect6

No data augmentation techniques have been applied to Othello and Connect6.
The amount of available data is sufficient and does not require augmentation.
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Appendix D

Deep Learning: Output
Visualization

D.1 LOA

Figure D.1: Outcome Loss in % for NW2 on LOA.
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Figure D.2: Distance Loss in moves for NW2 on LOA.
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D.2 Hex

Figure D.3: Outcome Loss in % for NW1 on Hex.
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Figure D.4: Distance Loss in moves for NW1 on Hex.
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D.3 Othello

Figure D.5: Outcome Loss in % for NW1 on Othello.
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Figure D.6: Distance Loss in moves for NW1 on Othello.
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D.4 Connect6

Figure D.7: Outcome Loss in % for NW4 on Connect6.
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Figure D.8: Distance Loss in moves for NW4 on Connect6.
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