
An Exploratory Literature Study on Sharing and
Energy Use of Language Models for Source Code

Max Hort
Simula Research Laboratory

Oslo, Norway
maxh@simula.no

Anastasiia Grishina
Simula Research Laboratory &

University of Oslo
Oslo, Norway

anastasiia@simula.no

Leon Moonen
Simula Research Laboratory &
BI Norwegian Business School

Oslo, Norway
leon.moonen@computer.org

Abstract—CONTEXT: Large language models trained on
source code can support a variety of software development
tasks, such as code recommendation and program repair. Large
amounts of data for training such models benefit the models’
performance. However, the size of the data and models results
in long training times and high energy consumption. While
publishing source code allows for replicability, users need to
repeat the expensive training process if models are not shared.

GOALS: The main goal of the study is to investigate if pub-
lications that trained language models for software engineering
(SE) tasks share source code and trained artifacts. The second
goal is to analyze the transparency on training energy usage.

METHODS: We perform a snowballing-based literature search
to find publications on language models for source code, and
analyze their reusability from a sustainability standpoint.

RESULTS: From a total of 494 unique publications, we
identified 293 relevant publications that use language models to
address code-related tasks. Among them, 27% (79 out of 293)
make artifacts available for reuse. This can be in the form of
tools or IDE plugins designed for specific tasks or task-agnostic
models that can be fine-tuned for a variety of downstream tasks.
Moreover, we collect insights on the hardware used for model
training, as well as training time, which together determine the
energy consumption of the development process.

CONCLUSION: We find that there are deficiencies in the
sharing of information and artifacts for current studies on source
code models for software engineering tasks, with 40% of the
surveyed papers not sharing source code or trained artifacts. We
recommend the sharing of source code as well as trained artifacts,
to enable sustainable reproducibility. Moreover, comprehensive
information on training times and hardware configurations
should be shared for transparency on a model’s carbon footprint.

Index Terms—sustainability, reuse, replication, energy, DL4SE.

I. INTRODUCTION

The FAIR data principles are designed to support and en-
hance the reusability of digital research objects following four
guiding principles: to be findable, accessible, interoperable,
and reusable [1]. While the initial focus of FAIR was on
scientific data, the principles have been transferred to research
software [2]. Publishing source code supports the replicability
of software but may incur repeated training costs, if a software
product is data-driven. Training costs can be especially high
for tools that are trained on large amounts of data, such as
Machine Learning (ML) models, which have achieved state-of-
the-art performance in various disciplines (e.g., text and image

understanding, video content prediction [3, 4]). In particular,
Deep Learning (DL) often achieves performance improve-
ments by increasing the amount of training data and the size
of the model, leading to long training times and substantial
energy consumption [5], with an increase in computational
costs for state-of-the-art models by a factor of 300 000 between
2012 and 2018 [6, 7]. This trend not only raises barriers for
researchers with limited computational resources [8], it is also
harmful to the environment [5, 6].

One class of DL models that benefit from training on large
amounts of data are Large Language Models (LLMs). LLMs
have been able to learn semantic information via training
on texts from the Internet and achieve high performance on
Natural Language Processing (NLP) tasks [5, 9]. Similarly,
by training language models on a large corpus of source
code (e.g., as provided by GitHub1), one can learn semantic
information of source code [10] and apply the models on SE
tasks, such as code generation, bug prediction and fixing, to
alleviate developers from tedious work [11]. This research area
is referred to as DL4SE, and the models are referred to as
Source Code Models (SCMs).

Training an SCM can take more than 100 days and incur
high costs from hardware and energy requirements [12, 13].
From an energy usage point of view, only sharing the source
code to train the model is wasteful, because replication or
reuse requires repeating the expensive and energy-consuming
training process. Instead, trained models should be considered
digital artifacts that must be shared to lower the bar for build-
ing on existing work [14]. For instance, fine-tuning an existing
task-agnostic model requires only a fraction of the computa-
tional costs of training such a model from scratch [12].

Despite the benefits of sharing the trained models and source
code, a large number of studies in DL, including many in
DL4SE, do not make code or models publicly available. Liu et
al. [15] surveyed deep learning studies in SE conferences and
journals. They found that 74.2% of the studies did not share
the source code and data for replication. Failing to share the
data or trained artifacts contradicts the software sustainability-
quality characteristics [16]. Software sustainability is defined
from economic, environmental, social and technical dimen-

1 www.github.com

This work is licensed under a Creative Commons
Attribution 4.0 International (CC BY 4.0) license. 1 Accepted for publication in the 17th ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement (ESEM 2023).

ar
X

iv
:2

30
7.

02
44

3v
1 

 [
cs

.S
E

] 
 5

 J
ul

 2
02

3

www.github.com


sions in that software should generate economic value, enable
equal and sustained access to social resources, minimize harm
to the environment, and ensure technical improvements and
maintainability [17]. In this study, we focus on the techni-
cal and environmental aspects of sustainability in software,
namely reusability and efficiency [16, 18]. To investigate the
reusability and resource efficiency of source code models, we
perform an exploratory literature search of existing DL4SE
publications. For each publication, we investigate whether
code and trained models are available, and what the training
and energy requirements are. In other words, we focus on the
following two research questions:
RQ1: How many DL4SE publications share source code

and/or trained models or related trained artifacts?
RQ2: How much energy was used to train these models?

Contributions: The contributions of this paper include:
⋆ We conduct an exploratory study on the sustainability

and reusability of (large) language models for source
code. We analyze to what extent publications make
trained artifacts available, so that software developers
and researchers can reuse and profit from large models
trained with high energy consumption without incurring
such training costs themselves.

⋆ We investigate the information provided in 79 publica-
tions with shared artifacts;

⋆ We estimate the energy needed for training models from
30 publications that provided sufficient information;

⋆ We summarize the lessons learned while studying the
academic literature with this focus on sustainability;

⋆ We provide recommendations to help researchers make
their models more sustainable and support clearly com-
municating the relevant aspects in their publications.

II. RELATED WORK

A. Sustainable Software Engineering

Sustainable software engineering addresses sustainability in
two regards: (1) creating software that empowers sustain-
able applications and (2) creating software in a sustainable
resource-efficient way. The former is referred to as Information
Technology for Green (IT for Green) [19] or sustainability
BY software [16]. The latter is called Green IT [20] or
sustainability IN software [16]. In this study, we focus on sus-
tainability IN software and use the term sustainable software
or sustainable software engineering to define reusable shared
software that is built with resource usage considerations in
mind. Development of sustainable software can be supported
by integrating sustainability goals in the development pro-
cess [20]. One way to improve the sustainability of software
is to optimize its performance by refactoring the source code,
which can have positive impacts on the accompanying energy
consumption [21]. For example, Verdecchia et al. [22] showed
that refactoring code smells in Java applications can reduce
energy consumption by almost 50%.

In addition to observing the energy consumed by applying
software and potential positive effects by providing sustain-

able solutions, the energy consumed during the development
process is of relevance as well, as pointed out by the GREEN-
SOFT model [23]. The GREENSOFT model presents a life
cycle for software products. Accordingly, a green software
product should be sustainable during the course of the life
cycle, including the software engineering process and the tasks
developers address during implementation and maintenance.
To alleviate their workload, they can use tools to automate and
support software engineering tasks. In this regard, Martinez
et al. [24] addressed the field of green software research
by measuring energy consumption induced by development
and maintenance activities, in particular Automated Program
Repair (APR). APR is used to fix software bugs, which usually
incur a high monetary cost to resolve, without requiring
manual intervention of developers. While APR tools tend to
report their performance in terms of number of bugs they
are able to fix, Martinez et al. [24] considered their energy
consumption as an additional quality measure. To evaluate the
trade-off between accuracy and energy consumption of APR
tools, they computed the energy cost for each point of accuracy
(i.e., energy consumption divided by accuracy).

B. Energy Consumption of Machine Learning Models

The energy consumption of training and developing ML mod-
els is becoming a growing concern [25], with models requiring
large amounts of computational resources to train, causing
financial costs and CO2 emissions [7, 26]. Recently, imple-
mentation challenges and leaderboards have been introduced
to incentivize the development of energy efficient models [27,
28]. Another proposition is to measure the performance of ML
models not only with regard to accuracy, but also to consider
energy consumption and trade-offs between the two metrics.

To account for the sustainability–accuracy trade-off,
Gutiérrez et al. [29] analyzed the impact of changing solvers
for ML models. Having applied the models to credit card fraud
data, they found configurations that required 2.9x more energy
while improving accuracy by only 0.016. This illustrates that
developers can make trade-offs between energy consumption
and ML quality measures, such as precision and recall. In
the same line of research, Georgiou et al. [7] compared
the energy consumption of two frameworks (TENSORFLOW,
PYTORCH) for the development of DL by implementing and
comparing the performance of six machine learning models.
Energy consumption varied significantly in both the training
and inference stages, with TENSORFLOW requiring less energy
for training and PYTORCH less energy for inference. However,
the framework documentation did not provide information on
hardware specifications to allow developers to select models
and frameworks with regard to energy requirements.

Verdecchia et al. [25] modified the underlying datasets for
training DL models to reduce energy consumption during
training. Results showed that reducing dataset size, either in
the number of features or number of data points, improves
the energy efficiency by up to 92%, while having a negligible
effect on accuracy reduction for selected algorithms. Garcia-
Martin et al. [30] investigated the impact of parameter tun-

2



research
questions

select initial
seed papers filtering

extract
information
& classify

repeat backward
snowballing
& selection

4

35

exclusion
criteria

676backward
snowballing

202 108

information
extraction
template

reusable
(model available)

79

reproducible
(code available)

98

nothing
available

116

33

repeat filtering,
extraction

& classification

44 4x

40 58

83

deduplication
& selection

1 2 3 4 5 7

6

inclusion
criteria

292

10794474

Fig. 1. Overview of the search procedure.

ing on energy consumption and accuracy for the Very Fast
Decision Tree algorithm. In some cases, small reductions in
accuracy (< 0.1) can reduce energy consumption by more than
70%. For an overview of publications addressing Green AI (AI
systems developed with sustainability and costs considered),
we refer to the systematic review by Verdecchia et al. [31].

C. Energy Consumption of Large Language Models

To support responsible NLP, Zhou et al. [12] proposed the
platform HULK for benchmarking pre-trained language models
in terms of time and cost. Processing time and costs are mea-
sured according to cloud services’ hardware specifications and
resource consumption. The cost of NLP models is evaluated
at three stages: pre-training, fine-tuning, and inference. Pre-
training is the most expensive stage in the development of
language models: it can take several days and can cost up to
75,000$. However, once pre-trained, a model can be fine-tuned
for several tasks, which requires less computational resources.

Strubell et al. [5] provided insights on the financial and
environmental costs of training large language models for NLP
tasks. In particular, they estimate the training cost in USD and
carbon emissions for four open-source models. For example,
training large language models with neural architecture search
can cause CO2 emissions 17 times as high as the average
per-capita consumption in America. Given the high cost of
NLP models, Strubell et al. formulated three actionable recom-
mendations: (1) authors should report training times to allow
for a cost-benefit analysis rather to solely focus on accuracy;
(2) researchers need equal access to computational resources;
(3) efficient hardware and algorithms should be prioritized.

III. LITERATURE SEARCH

To find relevant literature, we adopt and adapt a snowballing
search procedure [32–34]. We make small adjustments to
the search procedure described by Wohlin et al. [33], as we
aim to build on four recent surveys in the domain of deep
learning models for software engineering tasks. The surveys
examine different research questions than ours but consider
the same domain, which makes them good starting points.
Moreover, we apply the inclusion and exclusion criteria after
each snowballing step to control the scope of the search,
as it can quickly become too wide and cover all of SE.
Figure 1 presents an overview of the search procedure and the
number of publications collected. The search and subsequent

information extraction were conducted by the first two authors;
the third author helped mitigate classification discrepancies
where needed. In step 1 , we select the four survey papers
that seed the study. We include both published work and arXiv
preprints to ensure timeliness. The four seed surveys are:

• Chen and Monperrus [35]: A literature study on em-
beddings learned from source code. Embeddings have
been trained on different levels of granularity (e.g., binary
code, tokens, functions). A list of 21 publicly available
embeddings is provided.

• Sharma et al. [36]: A survey of ML techniques for
analysing source code. A total of 364 studies published
from 2002–2021, divided over 12 SE tasks. For each
task, data collection, feature extraction and model training
stages are outlined. They listed 61 tools for analyzing
source code and applying ML techniques.

• Watson et al. [37]: A literature review of deep learning
approaches in SE research. A total of 128 deep learning
publications spanning 23 SE tasks have been reviewed.

• Niu et al. [38]: A survey on pre-trained models on source
code applied to SE tasks. They presented a total of 20 pre-
trained code models that have been applied to 18 tasks.

These four initial studies contain references to a total of 676
publications (step 2 ). After deduplication, we consider a total
of 202 unique publications for further investigation based on
their title (step 3 ). We deem a paper of interest for further
analysis if the title matches the following inclusion criteria:

IC-1: the publication addresses an SE task, and
IC-2: the publication applies a deep learning technique.

To filter relevant publications, we read all 202 publications,
published from 2012-2022, and flag publications for exclusion
if they did not train language models for source code, i.e., the
exclusion criterion for step 4 is:

EC-1: the publication does not train a source code model.

This step leaves us with 108 publications for further analysis.
In step 5 , we extract information from the 108 publications

to determine how they share artifacts. First, we investigated
if source code is available. For this purpose, we analyzed
the respective publications for links or references to external
sources (e.g., a GitHub repository for source code, or Zenodo
for datasets and tools). Among the 108 publications, 33 publi-

3



TABLE I
DESCRIPTION OF SOFTWARE ENGINEERING TASKS. TYPE ILLUSTRATES THE INPUT AND OUTPUT OF THE RESPECTIVE TASKS

(NL = NATURAL LANGUAGE, PL = PROGRAMMING LANGUAGE, V = EXTRACTED OR PREDICTED VALUE).

Task Type Description

Inference PL → V Predict code properties (e.g., variable names, data types, code authors).
Code summarization PL→ NL Summarize source code snippets in natural language.
Code search NL→ PL Search for code snippets given a description.
Code completion PL→ PL Recommend likely tokens for a code sequence.
Default detection PL→ V Determine whether a code snippet is faulty.
Documentation generation PL→ NL Generate (e.g., comments, commit messages, docstrings)
Code generation NL→ PL Generate source code given a description (e.g., log messages, program synthesis).

Comprehension PL x NL → V
PL x NL → NL

Check if a code snippet can answer a question.
Answer question about a code snippet.

Clone detection PL→ V Clone and similarity determination of two code snippets.
Code translation PL → PL Translate source code from one programming language to another.
Code repair PL → PL Repair a faulty code snippet.

cations did not provide source code (“unavailable” in Fig. 1).2

Next, we determined if the shared artifacts do not only provide
source code, but include fully functional tools or checkpoints
for ML models that are ready to use, without the need to be
trained. This was the case for 35 out of the 108 publications
(“reusable” in Fig. 1). The remaining 40 publications provided
source code but no trained artifacts (“reproducible” in Fig. 1).

The initial survey-based search is followed by repeated
backward snowballing in steps 6 & 7 . During snowballing,
we collect additional relevant publications that have been
cited by the 35 publications which provided trained artifacts
collected prior. Snowballing is performed incrementally on
publications that share trained artifacts, until no new publi-
cations are found (i.e., we perform multiple iterations, and
stop when a fixed point is reached, which happened after four
iterations). This yielded 292 additional publications (published
from 2002-2023) that fit the inclusion criteria, bringing the
total to 494 (202 from step 3 and 292 from step 6 ). After
further inspection, 107 of the 292 additional publications did
not train a language model and were excluded. Furthermore,
83 of those publications did not provide source code, and
58 of the publications shared source code but not the trained
artifacts. Thus, repeated snowballing adds 44 publications that
share trained artifacts, bringing the total to 79 publications
with shared artifacts, published from 2015 to 2022.

We classify these 79 publications with respect to the 11
SE tasks presented in Table I, which were inspired by Niu
et al. [38]. To address these tasks, source code models were
trained on 18 different programming languages. The most
frequent languages include Java (45 publications), Python (32
publications), and C and/or C++ (18 publications). Figure 2
presents the number of publications for each combination of
programming language and SE task (e.g., an approach trained
on Java source code for code completion).

We found that there are two types of trained artifacts that
were publicly available: (1) trained ML models and tools;
(2) source code embeddings. While trained models and tools
are aimed at a specific task, source code embeddings are

2 To ensure that no artifacts were overlooked, we performed additional
Google searches for publications that did not mention artifacts for replication.

In
fe

re
nc

e

C
od

e 
su

m
m

ar
iz

at
io

n

C
od

e 
se

ar
ch

C
od

e 
co

m
pl

et
io

n

C
od

e 
G

en
er

at
io

n

D
ef

ec
t p

re
di

ct
io

n

D
oc

um
en

ta
tio

n 
 G

en
er

at
io

n

C
od

e 
re

pa
ir

C
om

pr
eh

en
si

on

C
lo

ne
 d

et
ec

tio
n

C
od

e 
tra

ns
la

tio
n

Java
Python

C#
JavaScript
TypeScript

C/C++
PHP

Ruby
Go

SQL
GO

Solidity
IFTTT
LISP

SWIFT
Lua

Scala
Rust 0

2

4

6

8

10

12

Fig. 2. Number of publications with shared artifacts for combinations of task
and programming language.

task-agnostic and provide comprehensive code representations
for training future models with less effort than generating
pre-trained embeddings [12]. Section IV (task-specific tools)
and Section V (task-agnostic embeddings) present detailed
information for the two types of shared artifacts.

Answer to RQ1: Out of the reviewed 293 publications,
33% shared source code and 27% shared trained artifacts.

IV. TASK-SPECIFIC CODE MODELS

This section presents approaches with shared artifacts that are
designed to address specific tasks. In total, we collected 52
task-specific publications, which are summarized in Table II.
Publications are presented with regards to the task they address
and their respective programming language is shown, as well
as hardware configuration and training time, if provided.

Among the 52 publications, two publications shared artifacts
for more than one task. Hoang et al. [57] proposed CC2Vec, an
approach for representing code changes. For each of the three
tasks (log message generation, bug fixing patch identification,

4



TABLE II
TRAINING DETAILS FOR TASK-SPECIFIC LANGUAGE MODELS. FOR EACH MODEL, WE LIST HARDWARE DETAILS, TRAINING TIME IN hours AND

ESTIMATED ENERGY CONSUMPTION IN kWh, IF THE INFORMATION IS AVAILABLE. IF ONLY PARTIALLY TRAINED ARTIFACTS ARE AVAILABLE, WE
APPEND THE APPROACH REFERENCE WITH † .

Task Approach Year Language Hardware Hours kWh

DeepSim [39]† 2018 Java desktop PC: Intel i7 CPU at 4.0GHz, 4 cores; 1 NVIDIA RTX 1080 GPU 4 1.1
FCDetector [40]† 2020 C++ server: 2.4GHz CPU, 8 cores; 1 NVIDIA GTX 1080 GPU 2 1.1
func2vec [41]† 2018 C AWS, Intel Xeon E5-2686 v4 (Broadwell) Processors and DDR4 Memory. 2Clone detection

TBCCD [42]† 2019 Java, C

C3PO [43] 2020 C# 1 NVIDIA Tesla V100 GPU 9 4.6
AnyCodeGen [44] 2020 Java, C++ NVIDIA Tesla V100 GPU
Retrieve-and-edit [45]† 2018 Python

Code
completion

Codit [46] 2022 Java

Intellicode compose [47] 2020 Python, C#, JavaScript, TypeScript 80 NVIDIA Tesla v100 GPUs, 32 GB 492.5 19,750.0
Pythia [48] 2019 Python NVIDIA Tesla V100 GPUs 30,000 15,330.0
Bayou [49] 2018 Java AWS, p2.xlarge: 1 NVIDIA K80 GPU, 12 GB 10 4
Xu et al. [50] 2020 Python

Code
generation

NL2code [51] 2017 Python, IFTTT

CURE [52] 2021 Java server: 1 NVIDIA TITAN V GPU, 3 NVIDIA TITAN Xp GPUs 528 448.8
RLAssist [53] 2019 C Intel Xeon E5-2630 v4 CPU at 2.20GHz, 32 GB 504 81.6
TFix [54] 2021 JavaScript 8 NVIDIA RTX 2080 Ti GPUs 96 321.6
Sequencer [55] 2019 Java 1 NVIDIA K80 GPU 1 0.6
DeepRepair [56] 2019 Java
CC2Vec [57] 2020 Java, C
DL4PatchCorrectness [58] 2020 Java
RewardRepair [59] 2022 Java
VRepair [60] 2022 C

Code repair

Tufano et al. [61] 2019 Java

MP-CAT [62] 2020 Python 67
CoCLR [63] 2021 Python 1 NVIDIA Tesla V100 GPU, 16 GB
CoaCor [64] 2019 SQLCode search

NCS [65] 2020 Python

CAST [66] 2021 Java server: 4 NVIDIA Tesla V100 GPUs 33 67.1
LeClair et al. [67] 2020 Java Xeon E1430v4 CPUs, 110 GB; 1 NVIDIA Titan RTX GPU, 1 Quadro P5000 GPU
Attn-to-FC [68] 2020 Python Intel Core i7 CPU at 2.2GHz, 64GB 1600 MHz DDR; 1 NVIDIA Titan X GPU, 2GB

Code
summarization

MMTrans [69] 2021 Solidity server: 4 NVIDIA RTX 2080 Ti GPUs, 11 GB

Code translation TransCoder [70] 2020 Java, C++, Python 32 NVIDIA V100 GPUs

CoCLR [63] 2021 Python 1 NVIDIA Tesla V100 GPU, 16 GB
CodeQA [71] 2021 Java, Python 3 NVIDIA 1080 Ti GPUsComprehension
Staqc [72]† 2018 Python, SQL

IVDetect [73] 2021 C/C++ 239

VulBERTa [74] 2022 C/C++ pre-train: GCP VMs: 48 vCPUs, 240 GB; 2 NVIDIA Tesla A100 GPUs, 40 GB
fine-tuning: 48 cores Intel Xeon Silver CPU, 292 GB; 2 NVIDIA TITAN Xp GPUs 106 91.0

DeepWukong [75] 2021 C/C++ Intel Xeon E5-1620 CPU at 3.50GHz; 1 NVIDIA RTX 1080 Ti GPU 23 12.7
Li et al. [76] 2019 Java 11
Lin et al. [77]† 2018 C server: 2 Intel Xeon E5-2690 v3 CPUs at 2.60GHz, 96 GB 6 3.1
FUNDED [78]† 2021 Java, C, C++, PHP, SWIFT server: Intel Xeon CPU, 2.4GHz, 14 cores; 1 NVIDIA 2080Ti GPU 2 0.9
Deepbugs [79]† 2018 JavaScript Intel Xeon E5-2650 CPU, 48 cores, 64 GB; 1 NVIDIA Tesla P100 GPU 1 1.4
REVEAL [80] 2020 C/C++ 16 Intel Xeon CPUs at 2.60GHz, 252 GB; 1 NVIDIA RTX 1080 Ti GPU

Defect
prediction

CC2Vec [57] 2020 Java, C

CUP [81] 2020 Java Intel Xeon CPU at 2.7GHz, 40 cores 290 168.5
CC2Vec [57] 2020 Java, C
DEEP JIT [82]† 2020 Java

Documentation
generation

DeepCommenter [83] 2020 Java

PigeonJS [84]† 2018 JavaScript, Java, Python, C# 100

Type4Py [85] 2022 Python AMD Ryzen Threadripper 1920X with 24 threads at 3.5GHz, 64 GB
2 NVIDIA RTX 2080 TI GPUs 100 2.0

JS NICE [86] 2015 JavaScript 4 Xeon CPUs at 2.13GHz, 32 cores 10
NL2Type [87] 2019 JavaScript Intel Xeon E5-2650 CPU, 48 cores, 64 GB; 1 NVIDIA Tesla P100 GPU, 16 GB 4 5.7
DeepTyper [88] 2018 TypeScript Intel i7-8700 CPU, 6 cores, 32 GB; 1 NVIDIA RTX 1080 Ti GPU
Lambdanet [89] 2020 TypeScript

Inference

NATURALIZE [90]† 2015 Java

and just-in-time defect prediction), they trained and shared a
separate model. Huang et al. [63] first introduced a new dataset
called CoSQA, consisting of 20,604 human-annotated labels
for natural language and source code pairs. Additionally, they
proposed a model, CoCLR, trained on two tasks: code search
and question answering. Their GitHub repository provides
model checkpoints for both of these tasks.

The most frequently addressed tasks are concerned with
faulty programs: code repair and defect prediction. Ten pub-
lications proposed approaches for code repair and nine publi-
cations addressed defect prediction. The task with the fewest

available artifacts is code translation. Only Lachaux et al. [70]
shared their TransCoder models for translating between three
programming languages (Java, C++, Python). To allow for the
translation of each pair of languages, they shared two models:
1) translate C++ → Java, Java → C++, Java → Python; 2)
C++ → Python, Python → C++, Python → Java.

The most popular programming languages, among 11
unique languages considered by the 52 publications, are Java
(23 out of 52 publications), C/C++ (14 out of 52 publi-
cations), and Python (14 out of 52 publications). In detail,
42 publications considered one programming language, while

5



TABLE III
TRAINING DETAILS FOR TASK-AGNOSTIC LANGUAGE MODELS. FOR EACH MODEL, WE LIST HARDWARE DETAILS, TRAINING TIME IN hours AND

ESTIMATED ENERGY CONSUMPTION IN kWh, IF THE INFORMATION IS AVAILABLE.

Approach Year Language Hardware Time in hours kWh

BLOOM [13] 2022 Java, PHP, C++, Python, JavaScript, C#, Ruby, Lua,
TypeScript, GO, C, Scala, Rust

server: 384 NVIDIA A100 GPUs, 80 GB 1,082,990 433,196

Prophetnet-x [91] 2021 Go, Java, JS, Php, Python, Ruby NVIDIA Tesla V100 GPUs 30,000 15,330
CodeBERT [92] 2020 Python, Java, JavaScript, PHP, Ruby, Go server: 16 NVIDIA Tesla V100 GPUs, 32 GB 1,320 10,610
Dobf [93] 2021 Java, Python 32 NVIDIA V100 GPUs 192 3,080
Codet5 [94] 2021 Ruby, JavaScript, Go, Python, Java, Php, C, C# server/cluster: 16 NVIDIA A100 GPUs, 40 GB 288 1,930
PLBART [95] 2021 Java, Python 8 NVIDIA RTX 2080 Ti GPUs 276 925
Mastropaolo et al. [96] 2021 Java Google Cloud, Colab: 8 TPUs, 35.5 GB memory 343 766
Graphcodebert [97] 2021 Ruby, JS, Go, Python, Java, PHP server: 32 NVIDIA Tesla V100 GPUs, 32 GB 83 667
CodeTrans [98] 2021 Python, Java, JavaScript, PHP, Ruby, Go, C#, SQL, LISP 1 TPU v3-8 2,088 582
GREAT [99] 2022 Python 1 Tesla P100 GPU 120 51
Javabert [100] 2021 Java 3 NVIDIA Titan X GPUs, 12 GB 24 30
code2vec [101] 2019 Java 1 NVIDIA Tesla K80 GPU 36 18
OpenVocabCodeNLM [102] 2020 Java, Python, C GPUs 336 -
GraphCode2Vec [103] 2022 Java server: 40 CPUs@2.20GHz, 256GB; 1 NVIDIA Tesla V100 GPU - -
Spt-code [104] 2022 Java, Python, JavaScript, PHP, GO, Ruby 4 NIVDIA A100s9 GPUs - -
StructCoder [8] 2022 Java, Python, PHP, JavaScript 4 RTX 8000 GPUs, 48GB - -
Codex [10] 2021 Python Azure - -
Cotext [105] 2021 Python, Java, JavaScript, PHP, Ruby, Go 1 TPU v2-8 - -
CuBERT [106] 2020 Python TPUs - -
TSSA [107] 2020 Java 1 NVIDIA P100 GPU, 16 GB; 1 K80 GPU, 16GB memory - -
CodeGPT [108] 2021 Python, Java - - -
ContraCode [109] 2021 JavaScript - - -
CodeTransformer [110] 2021 Python, JavaScript, Ruby, GO - - -
DAMP [111] 2020 Java, C# - - -
Obfuscated Code2Vec [112] 2020 Java - - -
code2seq [113] 2019 Java, C# - - -
Efstathiou and Spinellis [114] 2019 Java, Python, C++, C#, C, PHP - - -

ten publications were applied to more than one language:
six publications considered two programming languages, one
publication considered three languages, and three publications
considered four languages. This results in an average of 1.33
programming languages considered per publication.

In addition to programming languages considered, we col-
lect training details, such as hardware used and training time
for each publication. However, those are not always provided.
There are 22 out of 52 publications without hardware details
(42%) and 26 out of 52 without training time (50%), 33%
shared neither information (17 out of 52 publications). The
training time of 26 publications with such details ranges from
two hours or less [41, 55, 78, 79, 85] to hundreds of hours [47,
53]. While it is common to perform training on GPUs, there
are four publications that did not use any GPU for their
training procedure, published from 2015–2019 [41, 53, 77, 86].
Commonly, publications used a single GPU for training [39,
40, 43, 44, 49, 55, 63, 68, 75, 78–80, 87, 88], sometimes in
combination with CPUs. The highest amount of GPUs have
been used by Svyatkovskiy et al. [47]. They utilized 5 Lambda
V100 boxes, with 16 V100 GPUs each, resulting in 80 GPUs.

While we focus on the training procedure and the energy
associated with creating and sharing an ML model, we note
the application of such models can vary highly for different
SE tasks. Usually, the reported tested times are lower than
the required training time (e.g., more than 100 times quicker
than training [40, 75, 76]), but in particular, program repair
experiments can require long testing times. For example, Chen
et al. [55] applied Sequencer for 130 hours to find patches for
75 bugs. White et al. [56] applied their program repair tool
DeepRepair for 2,616 days. Data extraction and preparation

steps can also require considerable amounts of time and
compute resources, ranging from 5-12 days [73, 78, 81].

The majority of task-specific publications provided access
to the full trained models, some of which one needs to request
access to [51, 76]. Moreover, there are approaches shared as
online tools [44, 49, 86] or IDE extensions [47, 48, 83, 85].
There are also 12 out of 52 publications that did not share the
full model, but trained embedding files, which are used by the
model. These are marked in Table II with the † symbol.

V. TASK-AGNOSTIC CODE MODELS

This section presents task-agnostic code models which share
means of representing source code as embeddings, for a variety
of downstream tasks. These models are able to transform code
snippets to embeddings, which can be fine-tuned to SE tasks.
For example, Lu et al. [108] provided fine-tuning details for the
CodeXGLUE benchmark, with information for task-specific
training and inference time for each task.3 The fine-tuning
time ranges from 2 GPU hours (defect detection) to 60 hours
(text-to-code generation, documentation translation).

In total, we collected 27 task-agnostic models, as shown in
Table III. For each publication, we list the model name and
the programming languages it was trained on. If available,
we list details on hardware configuration and training times.
Among the 27 publications, 52% did not provide training time
details (14 out of 27) and 26% did not provide their hardware
configurations (7 out of 27). For publications without hardware
details, training time is not reported as well.

Among the publications that shared training time details,
the shortest duration is found for code2vec [101], which was

3 https://microsoft.github.io/CodeXGLUE/

6

https://microsoft.github.io/CodeXGLUE/


trained for 1.5 days and a single GPU. However, training
large models can usually take weeks, up to 87 days for Code-
Trans [98] and 3.5 months for BLOOM [13]. The long training
time of BLOOM can be explained by the fact that it was
trained on the highest number of programming languages (13
programming languages) in addition to 46 natural languages.
Thereby, BLOOM is also the model trained on the highest
number of programming languages, as it was trained on 13
out 14 programming languages we observed. BLOOM was not
trained on LISP, which was only considered by CodeTrans [98]
On average, each task-agnostic model is trained on source code
data from 3.6 programming languages. Moreover, 10 out of
the 27 publications train on a single programming language,
which in 6 out 10 cases is Java.

In comparison to task-specific models, task-agnostic models
are trained on more programming languages, 3.6 in compari-
son to 1.3 programming languages on average, and require a
higher computational effort. In addition, publications that pro-
vide task-agnostic models for embedding source code are more
likely to share hardware configurations than publications with
task-specific models. The proportion of publications without
training time details is comparable for both types (50% and
52%, for task-specific and task-agnostic models, respectively).
Another difference is that task-agnostic models use more
sophisticated hardware for training, with each publication
using either GPUs or TPUs. Only one publication considered
CPUs in addition to GPUs for training [103].

VI. DISCUSSION

To discuss the various facets of RQ2, we consider three
aspects: (A) How much energy do task-specific and task-
agnostic models consume? (B) To what extent do studies on
source code models take sustainability concerns into account?
(C) When is sharing a model more efficient than re-training?

A. Energy Usage of Task-specific vs. Task-agnostic Models

First, we perform a comparison of the energy consumed
by training task-specific and task-agnostic models. For this
purpose, we collect all publications that provide hardware and
training time details, such that we can estimate the consumed
energy in kilowatt-hours (kWh). In total, 30 publications
provide sufficient information.4

To estimate energy consumption, we used the Green Al-
gorithms calculator [115].5 This calculator is designed to
estimate the carbon footprint and energy needed to run al-
gorithms based on the number and type of CPU/GPU cores,
runtime, available memory, and platform run on (PC, local
server, cloud). It is also possible to consider the location for
training and running algorithms, because the energy mix in the
grid impacts the carbon footprint. In contrast to the Machine
Learning Emissions Calculator [116], the Green Algorithms
calculator provides averaged options when details are missing
(e.g., “world” if the country is unknown, “Any” CPU type
if the type is not known), which is beneficial for estimating

4Note that we did not contact authors to provide missing information.
5 https://www.green-algorithms.org/

TABLE IV
ASSUMPTIONS ABOUT MISSING HARDWARE SPECIFICATIONS MADE FOR
ENERGY USAGE ESTIMATION WITH GREEN ALGORITHMS CALCULATOR.
WE SPECIFY ASSUMPTIONS MADE FOR GPU, CPU AND ACCELERATORS

IF HARDWARE INFORMATION IN A PUBLICATION IS INCOMPLETE.

Model (NVIDIA) GPU Memory Assumptions

Any 16 GB, if missing
GTX 1080 8 GB
RTX 2080 Ti 16 GB
Tesla K80 12 GB
Tesla V100 16 GB
Titan P100 16 GB
Titan V 12 GB
Titan Xp 12 GB

Study Assumed Hardware Parameters

CUP [81] CPU: Intel Xeon E5-2697 v4, 64 GB
RLAssist [53] CPU: 10 cores; TDP 8.5 W

DeepSim [39] CPU: Intel Core i7-4790K, 32 GB,
TDP 22 W

NL2Type [87] CPU: TDP 11.875 W
Mastropaolo et al. [96] TPU type v2
Type4Py [85] CPU: 12 cores, TDP 15 W

energy consumption if these details are missing. Our estimates
report the energy needed in kWh with the default location set
to “world”, because server locations are seldom reported.

We share energy usage estimations in the last column of Ta-
ble II and Table III for task-specific and task-agnostic artifacts,
respectively. Hardware specifications required by the Green
Algorithms calculator are incomplete in the majority of studies
considered. Most of the models are trained using a type of
accelerator, such as GPU or TPU. Four studies reported cloud
provider utilization, while the other studies used different
server configurations. To this end, we make assumptions about
the missing specifications based on the standard CPU and GPU
values stated in product descriptions on web pages of Intel
and NVIDIA. In case the calculator does not cover a specific
CPU type, we fetch Thermal Design Power (TDP) information
from the manufacturers’ website, to estimate the power used
per core. In addition, for publications that used both CPU
and GPU for training their models, we consider both to be
active during the entirety of the training time, unless stated
differently. We use the specifications reported in Table IV
unless stated otherwise by the publications.

Figure 3 illustrates the energy consumed for training for
each of the 30 publications. Of these, 12 provided task-
agnostic models and 18 task-specific models. Among the task-
specific models, 5 only provided partially trained artifacts (e.g.,
embeddings that are used for later training), and therefore
require additional training effort before usage.

Answer to RQ2-A: 30 out of 79 publications share
sufficient information to estimate their energy consump-
tion during training. Among these, the training of task-
agnostic models used more sophisticated hardware (GPUs
and TPUs) and required more energy.

7

https://www.green-algorithms.org/


101 103 105

Training time, hours

100

101

102

103

104

105

En
er

gy
 c

on
su

m
ed

, k
W

h

task-agnostic
task-specific,
partial
task-specific,
complete

Fig. 3. Energy used for training publicly available models for code. We
distinguish partially shared and fully shared task-specific models, and fully
shared task-agnostic models.

B. Sustainability Concerns Considered in DL4SE Studies

In Section VI-A, we outlined publications that provided suffi-
cient information to estimate the energy required to replicate
their models (i.e., hardware and training time). While this is
important to understand how high the energy requirements are,
it does not illustrate whether the resource usage is sustainable,
or whether sustainability was taken into account. Only in a few
cases do authors consider the sustainability of the training pro-
cess and the carbon footprint caused. Here, we present all three
publications that, in addition to providing pre-trained artifacts,
mention sustainability concerns when training. All of these
three trained and provided large task-agnostic models, two of
which required “hundreds of petaflop/s-days of compute” [10]
or more than a million GPU hours for training [13].

Chen et al. [10] trained Codex on Azure, which purchases
carbon credits and uses renewable energies to reduce the car-
bon footprint. Using the pre-trained Codex model for repeated
inference could exceed training costs.

Wang et al. [94] stated that the experimental design followed
the objective of avoiding unnecessary computation, by creating
smaller-sized models in comparison to existing ones, such as
Codex. Moreover, training has been conducted on the Google
Cloud Platform, which purchases carbon credits to offset the
49.25kg CO2 caused by training CodeT5.

Le Scao et al. [13] considered various sustainability aspects
during the creation of BLOOM: equipment manufacturing,
model training, model deployment. The 81 tons of CO2 needed
for training BLOOM can be attributed to 14% equipment
manufacturing, 30% training, 55% idle energy consumption.
Training benefits from France’s energy grid, which uses nu-
clear energy in a large proportion, as a low-carbon energy
source. Further details on the carbon footprint of BLOOM are
provided in a dedicated study by Luccioni et al. [117].

Answer to RQ2-B: Three publications covered sustain-
ability concerns of the training process in addition to
providing trained models. For example, they used cloud
providers that purchase carbon credits or calculated CO2

emissions resulting from training the shared models.

C. When is Sharing Models More Efficient than Re-training?

In this section, we provide an exemplary scenario to compute
and compare the energy required for training and storing
a task-specific and task-agnostic model. We also show the
energy used for downloading shared artifacts, to illustrate the
energy-saving capabilities of sharing models trained on code.

In accordance with the energy estimates for the training
process in Section VI-A, we used the calculator provided by
Lannelongue et al. [115]. To determine the energy consump-
tion of training and sharing language models, we followed
Lakim et al. [118] who provided an assessment of the carbon
footprint for the Arabic language model Noor. Data storage
energy consumption estimates are based on the cloud storage
energy consumption reported by Posani et al. [119], with
a mean operating peak power of 11.3 W/TB. This measure
includes a redundancy factor of 2 (i.e., an additional copy is
stored) and Power Usage Effectiveness (PUE) of 1.6. Per year,
this results in the energy consumption of 99 kWh per TB of
data. Following the formula by Baliga et al. [120], Posani et
al. [119] estimated the energy consumption of data transfers
to be 23.9kJ/GB, with 1kJ being equal to 1/3600 kWh.

In Table V, we illustrate the exemplary energy consumption
of sharing a tool (500 MB) and a large task-agnostic model (5
GB) over the span of one year. Note that we only consider the
energy consumed by training and data storage. Other aspects,
such as the manufacturing of hardware components, are omit-
ted. Therefore, our example presents a reduced estimate of the
complete energy consumption of the entire model lifecycle.

One also needs to consider the rebound effect depending
on the number of downloads when estimating potential energy
savings [121]. If trained models are downloaded because it is
easy rather than necessary, then excess downloads can cause
higher energy consumption than the initial model training
caused. In our example, this is the case after 1,247 downloads
for the task-specific model and 20,544 downloads for the task-
agnostic model. While 20,544 downloads may sound like a
large number, CodeBERT [122] was downloaded 1,982,300

TABLE V
COMPARISON OF ENERGY CONSUMED FOR TRAINING, SHARING AND

DOWNLOADING PRE-TRAINED ARTIFACTS FOR EXEMPLARY
TASK-SPECIFIC AND TASK-AGNOSTIC MODELS.

Task-specific Task-agnostic

Training
Hardware 1 GPU 8 GPUs
Training time 10 hours 250 hours
Memory available 64 GB 64 GB
Platform Local Server Local Server
Location World World
Energy 3.74 kWh 677.95 kWh

Sharing
Model Size 500 MB 5 GB
Upload 0.003 kWh 0.033 kWh
Storage (1 year) 0.5 kWh 4.95 kWh

Download
100 downloads 0.33 kWh 3.32 kWh
1,000 downloads 3.32 kWh 33.19 kWh
10,000 downloads 33.19 kWh 331.94 kWh
1,000,000 downloads 3,319.44 kWh 33,194.44 kWh

8



times from Hugging Face in January 2023.6

Answer to RQ2-C: A rebound effect happens when a
shared model is downloaded too many times. For example,
energy usage for storage and downloading of a 500 MB-
size task-specific model is higher than re-training it after
ca. 1,130 downloads.

VII. THREATS TO VALIDITY

This section discusses the threats to validity of this mapping
study based on the categories identified by Zhou et al. [123].
Internal Validity: Internal validity refers to threats to the
validity of results presented in this work, for example, due
to missing relevant publications during the literature search
stage [124]. To mitigate this threat, we use a systematic
process, starting our literature search with four comprehensive
surveys on machine learning approaches for the SE domain.
These provide an overview of relevant publications from 2022
and prior. Moreover, we apply four stages of snowballing to
find additional references. This allows us to gather previous
approaches which shared their artifacts, but there is a chance
that we miss more recent works that have not been cited by
any publication in our corpus, as we did not perform forward
snowballing. While this can slightly alter our results, we are
hopeful that recent works are more likely to share artifacts
than publications from the past 10 years.
External Validity: External validity addresses the domain to
which our findings can be generalized to. While our study
focuses on the sustainability of shared artifacts for LLMs
on code, our results confirm observations of related studies,
such as high energy consumption in training LLMs for NLP
tasks [5] and a lack of shared artifacts of DL studies for SE
tasks [15]. Therefore, we hope our findings and recommenda-
tions are beneficial beyond LLM models for code.
Construct Validity: Construct validity is concerned with
the quality of measures chosen to study the construct of
interest. In our case, we were first interested in whether and
which artifacts are shared (i.e., none, source code, trained
models). For this purpose, we considered the absolute amount
of publications with respect to the amount of shared artifacts,
which coincides with the construct we want to measure.

Afterwards, we estimated the energy requirements in kWh
for training language models, for which we used the Green
Algorithms calculator [115]. For the validity of estimates,
we assume the correctness of the calculator and the infor-
mation specified in the respective publications (i.e., type of
CPU/GPU and training time). If the information provided was
not sufficient, we had to make choices for available memory
and hardware parameters. All such choices are provided in
Table IV, to make our kWh estimates reproducible.
Conclusion Validity: Conclusion validity describes whether
the operations performed and obtained results in this
study (e.g., literature search, data collection) can be repro-
duced [123]. Section III outlines our literature search proce-

6 https://huggingface.co/microsoft/codebert-base

dure, starting from four existing surveys, followed by iterative
snowballing steps. We list our inclusion and exclusion criteria,
to allow for a reproducibility. Moreover, we provide a link
to the collected publications and extracted information in the
Data Availability section, such that our search results can be
verified. To allow for the reproducibility of observations and
results, we provide all the relevant extracted information in Ta-
bles II and III. When information is insufficient, we provided
all assumptions over hardware specifications in Table IV.

VIII. LESSONS LEARNED

1. In general, shared information on the amount of energy
consumed by the training and use of SCMs is limited (RQ1;
some notable exceptions, such as BLOOM [13, 117], RQ2-B).
Specifically, CPU and GPU details are missing or incomplete
in the majority of papers, while they are crucial for energy
usage estimation. Even with hardware details and training
time available, it is hard to make accurate estimates of energy
consumption and CO2 footprint since other missing factors,
such as the server location, impact the estimation (RQ2-A).
2. From the data that is shared, we see that SCMs are ex-
tremely energy-intensive to train due to computational require-
ments, in particular, when compared to the energy required
for downloading shared artifacts (RQ2-C). It is therefore im-
portant that researchers share their artifacts (RQ1), including
pre-trained and fine-tuned models, as well as explore ways to
reduce their energy consumption, such as training in clouds
with low CO2 emissions (e.g., hydro-powered).
3. In general, we find that the larger the model, the higher
the energy consumed for its training (RQ2-A), increasing the
importance to share model artifacts to ensure sustainability.
4. Not only the energy consumption of training but also that of
long-term storage of pre-trained models and datasets, as well
as of their downloads should be considered (RQ2-C).
5. On the positive side, SCMs provide ample opportunities for
collaborative and cooperative efforts. Sharing artifacts in the
end can lead to higher sustainability than when all users would
develop their models independently. More work and data is
needed to be able to analyze this trade-off, which is why there
is a need for a series of guidelines or a checklist to help peo-
ple systematically report on the environmental/sustainability
impact of their techniques.

IX. RECOMMENDATIONS

1. Define the scope of the research and the intended application
of task-agnostic or task-specific SCMs to ensure a good
understanding of the intended tasks and reuse potential.
2. Establish a set of clear and transparent metrics for energy
consumption and sustainability to ensure systematic, accurate,
and reliable reporting.
3. Specify details of the hardware and software configuration
used for the training and inference of SCMs, including the
exact types of the processors and accelerators, memory and the
number of cores for CPU (e.g., Intel i7-8700 CPU, 6 cores,
32GB memory), the model and memory for GPUs (e.g., 1

9

https://huggingface.co/microsoft/codebert-base


NVIDIA Titan X GPU, 12GB), as well as storage media and
infrastructure (RQ2-A).
4. Provide energy consumption measurements [5, 125] or esti-
mations for both training and inference (RQ2-A). Use existing
proven calculators [115, 116] and provide complete details in
the paper, not just the final result, so that the computation can
be repeated if an improved calculator becomes available.
5. Document the CO2 footprint associated with energy con-
sumption, considering energy sources and carbon offsetting
applied. For cloud infrastructures, this means including the
provider and region, because these details vary by location.
6. Assess other environmental impacts of SCMs, including
the amount of data and storage required and the impact on the
(network) infrastructure (RQ2-C).
7. Provide (and promote) open access to data and models to
foster collaboration and reduce duplication of efforts, thereby
reducing the energy and resource requirements for SCM
development and fine-tuning.

Observe that several of these recommendations overlap with
the recommendations for reproducible machine learning [126],
which also cover additional aspects.

X. CONCLUSION

In this exploratory study, we have performed a snowballing
study (i.e., four iterations of backwards snowballing) to find
publications on language models for SE tasks, from which we
gathered 494 publications of interest. After applying our inclu-
sion and exclusion criteria, we are left with 293 studies, which
we investigated further with regard to their reusability and
sustainability (e.g., are trained artifacts shared?). We showed
that there are deficiencies in the existing studies that train
language models on source code regarding the transparency of
sustainability aspects. Among the 293 publications, only 27%
provide trained artifacts to enable the reuse of their models
without incurring the same amount of training effort; 40%
of the reviewed publications provide neither source code nor
trained artifacts.

We collect training information from the surveyed publi-
cations, including the hardware configurations and training
time. This allows us to estimate how much time and resources
can be saved by reusing the artifacts or how many resources
are needed to replicate the models. We have estimated the
energy consumption for 30 publications that provided suffi-
cient information (i.e., number and type of processors, training
time), while only two publications provided details on energy
consumption and CO2 of the model training [13, 94].

We stress the importance of describing hardware configura-
tions and processing times, so that even if energy consumption
is not reported, one can estimate the required resources and
judge whether one wants to spend effort to replicate ML
models. This agrees with Bender et al. [127], who called
for the research community to prioritize the environmental
and financial cost of deep learning systems, by reporting or
evaluating them with regard to resource usage. Optimally, if
a publication creates an ML tool or model with the clear
intention of its reuse, it can be beneficial to make trained

artifacts available. As shown, making small tools available for
download and reuse can prevent unnecessary energy consump-
tion as opposed to training tools from scratch.
Future Work: One possible direction for future investigation
is an analysis of the literature that cites the energy calcula-
tors [115, 116] mentioned earlier to assess if their use indeed
leads to better communication of sustainability aspects. This
could add further evidence to our recommendations.

DATA AVAILABILITY

To support open science and allow for replication and verifi-
cation of our work, an overview of the collected publications
and the extracted information is made available via Zenodo.7

ACKNOWLEDGEMENTS

The research presented in this paper was financially supported
by the Research Council of Norway through the secureIT
project (grant #288787). Max Hort is supported through the
ERCIM ‘Alain Bensoussan’ Fellowship Programme.

REFERENCES

[1] M. D. Wilkinson et al. “The FAIR Guiding Principles for Scientific
Data Management and Stewardship.” In: Scientific Data 3.1 (2016),
p. 160018.

[2] A.-L. Lamprecht et al. “Towards FAIR Principles for Research
Software.” In: Data Science 3.1 (2020), pp. 37–59.

[3] C. Sun et al. “VideoBERT: A Joint Model for Video and Lan-
guage Representation Learning.” In: Int’l Conf. Comp. Vision. 2019,
pp. 7464–7473.

[4] T. B. Brown et al. “Language Models Are Few-Shot Learners.”
In: Int’l Conf. Neural Information Processing Sys. Curran, 2020,
pp. 1877–1901.

[5] E. Strubell et al. “Energy and Policy Considerations for Deep
Learning in NLP.” In: Meeting of the Association for Computational
Linguistics. 2019, pp. 3645–3650.

[6] R. Schwartz et al. “Green AI.” In: Comm. ACM 63.12 (2020), pp. 54–
63.

[7] S. Georgiou et al. “Green AI: Do Deep Learning Frameworks Have
Different Costs?” In: Int’l Conf. Softw. Eng. 2022, pp. 1082–1094.

[8] S. Tipirneni et al. StructCoder: Structure-Aware Transformer for Code
Generation. 2022. arXiv: 2206.05239.

[9] T. Mikolov et al. “Distributed Representations of Words and Phrases
and Their Compositionality.” In: Int’l Conf. Neural Information
Processing Sys. Curran, 2013, pp. 3111–3119.

[10] M. Chen et al. Evaluating Large Language Models Trained on Code.
2021. arXiv: 2107.03374.

[11] S. Lu et al. “CodeXGLUE: A Machine Learning Benchmark Dataset
for Code Understanding and Generation.” In: Neural Information
Processing Sys. Track on Datasets and Benchmarks. 2021.

[12] X. Zhou et al. HULK: An Energy Efficiency Benchmark Platform for
Responsible Natural Language Processing. 2020. arXiv: 2002.05829.

[13] T. Le Scao et al. BLOOM: A 176B-Parameter Open-Access Multilin-
gual Language Model. 2022. arXiv: 2211.05100.

[14] D. S. Katz et al. “Working towards Understanding the Role of
FAIR for Machine Learning.” In: Ws. Data and Research Objects
Management for Linked Open Science. 2021, pp. 1–6.

[15] C. Liu et al. “On the Reproducibility and Replicability of Deep
Learning in Software Engineering.” In: ACM Trans. Softw. Eng. and
Methodology 31.1 (2021), 15:1–15:46.

[16] N. Condori-Fernandez et al. “Towards a Software Sustainability-
Quality Model: Insights from a Multi-Case Study.” In: Int’l Conf.
Research Challenges in Information Science. 2019.

[17] P. Lago et al. “Framing Sustainability as a Property of Software
Quality.” In: Comm. ACM 58.10 (2015), pp. 70–78.

[18] N. Condori-Fernandez et al. A Software Sustainability-Quality Model.
Vrije Universiteit Amsterdam, 2018.

7 Replication package on Zenodo: https://doi.org/10.5281/zenodo.8058668.

10

https://arxiv.org/abs/2206.05239
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2002.05829
https://arxiv.org/abs/2211.05100
https://doi.org/10.5281/zenodo.8058668


[19] B. Tomlinson. Greening through IT: Information Technology for
Environmental Sustainability. 2010.

[20] M. Dick et al. “Enhancing Software Engineering Processes towards
Sustainable Software Product Design.” In: Integration of Environmen-
tal Information in Europe. Ed. by K. Greve et al. Shaker Verlag, 2010.

[21] A. Hindle. “Green Mining: A Methodology of Relating Software
Change and Configuration to Power Consumption.” In: Emp. Softw.
Eng. 20.2 (2015), pp. 374–409.

[22] R. Verdecchia et al. “Empirical Evaluation of the Energy Impact
of Refactoring Code Smells.” In: Int’l Conf. ICT for Sustainability.
Vol. 52. 2018, pp. 365–383.

[23] S. Naumann et al. “The GREENSOFT Model: A Reference Model for
Green and Sustainable Software and Its Engineering.” In: Sustainable
Computing: Informatics and Systems 1.4 (2011), pp. 294–304.

[24] M. Martinez et al. Energy Consumption of Automated Program
Repair. 2022. arXiv: 2211.12104.

[25] R. Verdecchia et al. “Data-Centric Green AI: An Exploratory Empir-
ical Study.” In: Int’l Conf. ICT for Sustainability. 2022, pp. 1–11.

[26] E. Garcı́a-Martı́n et al. “Estimation of Energy Consumption in
Machine Learning.” In: J. Parallel and Distributed Computing 134
(2019), pp. 75–88.

[27] D. Li et al. “Evaluating the Energy Efficiency of Deep Convolutional
Neural Networks on CPUs and GPUs.” In: IEEE Int’l Conf.s on Big
Data and Cloud Computing (BDCloud), Social Computing and Net-
working (SocialCom), Sustainable Computing and Communications.
IEEE, 2016, pp. 477–484.

[28] P. Henderson et al. “Towards the Systematic Reporting of the Energy
and Carbon Footprints of Machine Learning.” In: J. Machine Learning
Research 21.1 (2022), 248:10039–248:10081.

[29] M. Gutierrez et al. “Analysing the Energy Impact of Different
Optimisations for Machine Learning Models.” In: Int’l Conf. ICT for
Sustainability. IEEE, 2022, pp. 46–52.

[30] E. Garcia-Martin et al. “Identification of Energy Hotspots: A Case
Study of the Very Fast Decision Tree.” In: Green, Pervasive, and
Cloud Computing. Ed. by M. H. A. Au et al. Vol. 10232. Springer
International Publishing, 2017, pp. 267–281.

[31] R. Verdecchia et al. A Systematic Review of Green AI. 2023. arXiv:
2301.11047.

[32] S. Jalali et al. “Systematic Literature Studies: Database Searches vs.
Backward Snowballing.” In: Int’l Symp. Empirical Softw. Eng. and
Measurement. ACM, 2012, pp. 29–38.

[33] C. Wohlin. “Guidelines for Snowballing in Systematic Literature
Studies and a Replication in Software Engineering.” In: Int’l Conf.
Evaluation and Assessment in Softw. Eng. ACM, 2014, pp. 1–10.

[34] K. Petersen et al. “Guidelines for Conducting Systematic Mapping
Studies in Software Engineering: An Update.” In: Information and
Softw. Technology 64 (2015), pp. 1–18.

[35] Z. Chen et al. A Literature Study of Embeddings on Source Code.
2019. arXiv: 1904.03061.

[36] T. Sharma et al. A Survey on Machine Learning Techniques for Source
Code Analysis. 2021. arXiv: 2110.09610.

[37] C. Watson et al. “A Systematic Literature Review on the Use of Deep
Learning in Software Engineering Research.” In: ACM Trans. Softw.
Eng. and Methodology 31.2 (2022), 32:1–32:58.

[38] C. Niu et al. Deep Learning Meets Software Engineering: A Survey
on Pre-Trained Models of Source Code. 2022. arXiv: 2205.11739.

[39] G. Zhao et al. “DeepSim: Deep Learning Code Functional Similarity.”
In: ACM J. Meeting Eur. Softw. Eng. Conf. and Symp. Found. Softw.
Eng. ACM, 2018, pp. 141–151.

[40] C. Fang et al. “Functional Code Clone Detection with Syntax and
Semantics Fusion Learning.” In: ACM SIGSOFT Int’l Symp. Softw.
Testing and Analysis. ACM, 2020, pp. 516–527.

[41] D. DeFreez et al. Path-Based Function Embedding and Its Application
to Specification Mining. 2018. arXiv: 1802.07779.

[42] H. Yu et al. “Neural Detection of Semantic Code Clones Via
Tree-Based Convolution.” In: IEEE/ACM 27th Int’l Conf. Program
Comprehension. IEEE, 2019, pp. 70–80.

[43] S. Brody et al. A Structural Model for Contextual Code Changes.
2020. arXiv: 2005.13209.

[44] U. Alon et al. “Structural Language Models of Code.” In: Int’l Conf.
Machine Learning. PMLR, 2020, pp. 245–256.

[45] T. B. Hashimoto et al. “A Retrieve-and-Edit Framework for Predicting
Structured Outputs.” In: Int’l Conf. Neural Information Processing
Sys. Curran, 2018, pp. 10073–10083.

[46] S. Chakraborty et al. “CODIT: Code Editing With Tree-Based Neural
Models.” In: IEEE Trans. Softw. Eng. 48.4 (2022), pp. 1385–1399.

[47] A. Svyatkovskiy et al. IntelliCode Compose: Code Generation Using
Transformer. 2020. arXiv: 2005.08025.

[48] A. Svyatkovskiy et al. “Pythia: AI-assisted Code Completion Sys-
tem.” In: ACM SIGKDD Int’l Conf. Knowledge Discovery & Data
Mining. ACM, 2019, pp. 2727–2735.

[49] V. Murali et al. Neural Sketch Learning for Conditional Program
Generation. 2018. arXiv: 1703.05698.

[50] F. F. Xu et al. “Incorporating External Knowledge through Pre-
training for Natural Language to Code Generation.” In: Annual
Meeting of the Association for Computational Linguistics. ACL, 2020,
pp. 6045–6052.

[51] P. Yin et al. A Syntactic Neural Model for General-Purpose Code
Generation. 2017. arXiv: 1704.01696.

[52] N. Jiang et al. “CURE: Code-Aware Neural Machine Translation for
Automatic Program Repair.” In: IEEE/ACM 43rd Int’l Conf. Softw.
Eng. 2021, pp. 1161–1173.

[53] R. Gupta et al. “Deep Reinforcement Learning for Syntactic Error
Repair in Student Programs.” In: AAAI Conf. Artificial Intelligence.
Vol. 33. 2019, pp. 930–937.

[54] B. Berabi et al. “TFix: Learning to Fix Coding Errors with a Text-
to-Text Transformer.” In: Int’l Conf. Machine Learning. Vol. 139.
PMLR, 2021, pp. 780–791.

[55] Z. Chen et al. “SEQUENCER: Sequence-to-Sequence Learning for
End-to-End Program Repair.” In: IEEE Trans. Softw. Eng. (2019).

[56] M. White et al. “Sorting and Transforming Program Repair Ingre-
dients via Deep Learning Code Similarities.” In: Int’l Conf. Softw.
Analysis, Evolution and Reengineering. 2019, pp. 479–490.

[57] T. Hoang et al. “CC2Vec: Distributed Representations of Code
Changes.” In: Int’l Conf. Softw. Eng. 2020, pp. 518–529.

[58] H. Tian et al. “Evaluating Representation Learning of Code Changes
for Predicting Patch Correctness in Program Repair.” In: IEEE/ACM
Int’l Conf. Autom. Softw. Eng. ACM, 2020, pp. 981–992.

[59] H. Ye et al. “Neural Program Repair with Execution-Based Back-
propagation.” In: Int’l Conf. Softw. Eng. ACM, 2022, pp. 1506–1518.

[60] Z. Chen et al. “Neural Transfer Learning for Repairing Security
Vulnerabilities in C Code.” In: IEEE Trans. Softw. Eng. 49.1 (2023),
pp. 147–165.

[61] M. Tufano et al. “On Learning Meaningful Code Changes Via Neural
Machine Translation.” In: Int’l Conf. Softw. Eng. 2019, pp. 25–36.

[62] R. Haldar et al. “A Multi-Perspective Architecture for Semantic Code
Search.” In: Annual Meeting of the Association for Computational
Linguistics. ACL, 2020, pp. 8563–8568.

[63] J. Huang et al. CoSQA: 20,000+ Web Queries for Code Search and
Question Answering. 2021. arXiv: 2105.13239.

[64] Z. Yao et al. “CoaCor: Code Annotation for Code Retrieval with
Reinforcement Learning.” In: Int’l World Wide Web Conf. ACM,
2019, pp. 2203–2214.

[65] G. Heyman et al. Neural Code Search Revisited: Enhancing Code
Snippet Retrieval through Natural Language Intent. 2020. arXiv:
2008.12193.

[66] E. Shi et al. CAST: Enhancing Code Summarization with Hierarchical
Splitting and Reconstruction of Abstract Syntax Trees. 2021. arXiv:
2108.12987.

[67] A. LeClair et al. Improved Code Summarization via a Graph Neural
Network. 2020. arXiv: 2004.02843.

[68] S. Haque et al. “Improved Automatic Summarization of Subroutines
via Attention to File Context.” In: Int’l Conf. Mining Softw. Reposi-
tories. ACM, 2020, pp. 300–310.

[69] Z. Yang et al. A Multi-Modal Transformer-based Code Summarization
Approach for Smart Contracts. 2021. arXiv: 2103.07164.

[70] M.-A. Lachaux et al. Unsupervised Translation of Programming
Languages. 2020. arXiv: 2006.03511.

[71] C. Liu et al. CodeQA: A Question Answering Dataset for Source
Code Comprehension. 2021. arXiv: 2109.08365.

[72] Z. Yao et al. “StaQC: A Systematically Mined Question-Code Dataset
from Stack Overflow.” In: Int’l World Wide Web Conf. ACM, 2018,
pp. 1693–1703.

[73] Y. Li et al. “Vulnerability Detection with Fine-Grained Interpreta-
tions.” In: ACM J. Meeting Eur. Softw. Eng. Conf. and Symp. Found.
Softw. Eng. ACM, 2021, pp. 292–303.

[74] H. Hanif et al. VulBERTa: Simplified Source Code Pre-Training for
Vulnerability Detection. 2022. arXiv: 2205.12424.

11

https://arxiv.org/abs/2211.12104
https://arxiv.org/abs/2301.11047
https://arxiv.org/abs/1904.03061
https://arxiv.org/abs/2110.09610
https://arxiv.org/abs/2205.11739
https://arxiv.org/abs/1802.07779
https://arxiv.org/abs/2005.13209
https://arxiv.org/abs/2005.08025
https://arxiv.org/abs/1703.05698
https://arxiv.org/abs/1704.01696
https://arxiv.org/abs/2105.13239
https://arxiv.org/abs/2008.12193
https://arxiv.org/abs/2108.12987
https://arxiv.org/abs/2004.02843
https://arxiv.org/abs/2103.07164
https://arxiv.org/abs/2006.03511
https://arxiv.org/abs/2109.08365
https://arxiv.org/abs/2205.12424


[75] X. Cheng et al. “DeepWukong: Statically Detecting Software Vulner-
abilities Using Deep Graph Neural Network.” In: ACM Trans. Softw.
Eng. and Methodology 30.3 (2021), pp. 1–33.

[76] Y. Li et al. “Improving Bug Detection via Context-Based Code
Representation Learning and Attention-Based Neural Networks.” In:
Proceedings of the ACM on Progr. Languages 3.OOPSLA (2019),
pp. 1–30.

[77] G. Lin et al. “Cross-Project Transfer Representation Learning for Vul-
nerable Function Discovery.” In: IEEE Trans. Industrial Informatics
14.7 (2018), pp. 3289–3297.

[78] H. Wang et al. “Combining Graph-Based Learning With Automated
Data Collection for Code Vulnerability Detection.” In: IEEE Trans.
Information Forensics and Security 16 (2021), pp. 1943–1958.

[79] M. Pradel et al. “DeepBugs: A Learning Approach to Name-Based
Bug Detection.” In: Proceedings of the ACM on Progr. Languages
2.OOPSLA (2018), pp. 1–25.

[80] S. Chakraborty et al. Deep Learning Based Vulnerability Detection:
Are We There Yet? 2020. arXiv: 2009.07235.

[81] Z. Liu et al. “Automating Just-in-Time Comment Updating.” In: Int’l
Conf. Autom. Softw. Eng. ACM, 2020, pp. 585–597.

[82] S. Panthaplackel et al. Deep Just-In-Time Inconsistency Detection
Between Comments and Source Code. 2020. arXiv: 2010.01625.

[83] B. Li et al. “DeepCommenter: A Deep Code Comment Generation
Tool with Hybrid Lexical and Syntactical Information.” In: ACM J.
Meeting Eur. Softw. Eng. Conf. and Symp. Found. Softw. Eng. ACM,
2020, pp. 1571–1575.

[84] U. Alon et al. A General Path-Based Representation for Predicting
Program Properties. 2018. arXiv: 1803.09544.

[85] A. M. Mir et al. “Type4Py: Practical Deep Similarity Learning-Based
Type Inference for Python.” In: Int’l Conf. Softw. Eng. ACM, 2022,
pp. 2241–2252.

[86] V. Raychev et al. “Predicting Program Properties from ”Big Code”.”
In: Symp. Princ. Prog. Lang. Vol. 50. ACM, 2015, pp. 111–124.

[87] R. S. Malik et al. “NL2Type: Inferring JavaScript Function Types
from Natural Language Information.” In: Int’l Conf. Softw. Eng. IEEE,
2019, pp. 304–315.

[88] V. J. Hellendoorn et al. “Deep Learning Type Inference.” In: Joint
Eur. Softw. Eng. Conf. and Symp. Found. Softw. Eng. ACM, 2018,
pp. 152–162.

[89] J. Wei et al. LambdaNet: Probabilistic Type Inference Using Graph
Neural Networks. 2020. arXiv: 2005.02161.

[90] M. Allamanis et al. “Suggesting Accurate Method and Class Names.”
In: Joint Eur. Softw. Eng. Conf. and Symp. Found. Softw. Eng. ACM,
2015, pp. 38–49.

[91] W. Qi et al. ProphetNet-X: Large-Scale Pre-training Models for
English, Chinese, Multi-lingual, Dialog, and Code Generation. 2021.
arXiv: 2104.08006.

[92] Z. Feng et al. CodeBERT: A Pre-Trained Model for Programming
and Natural Languages. 2020. arXiv: 2002.08155.

[93] B. Roziere et al. DOBF: A Deobfuscation Pre-Training Objective for
Programming Languages. 2021. arXiv: 2102.07492.

[94] Y. Wang et al. CodeT5: Identifier-aware Unified Pre-trained Encoder-
Decoder Models for Code Understanding and Generation. 2021.
arXiv: 2109.00859.

[95] W. U. Ahmad et al. Unified Pre-training for Program Understanding
and Generation. 2021. arXiv: 2103.06333.

[96] A. Mastropaolo et al. Studying the Usage of Text-To-Text Transfer
Transformer to Support Code-Related Tasks. 2021. arXiv: 2102 .
02017.

[97] D. Guo et al. GraphCodeBERT: Pre-training Code Representations
with Data Flow. 2021. arXiv: 2009.08366.

[98] A. Elnaggar et al. CodeTrans: Towards Cracking the Language of
Silicon’s Code Through Self-Supervised Deep Learning and High
Performance Computing. 2021. arXiv: 2104.02443.

[99] V. J. Hellendoorn et al. “Global Relational Models of Source Code.”
In: Int’l Conf. Learning Representations. 2022.

[100] N. T. de Sousa et al. JavaBERT: Training a Transformer-Based Model
for the Java Programming Language. 2021. arXiv: 2110.10404.

[101] U. Alon et al. “Code2vec: Learning Distributed Representations of
Code.” In: Princ. Prog. Lang. ACM, 2019, pp. 1–29.

[102] R.-M. Karampatsis et al. “Big Code != Big Vocabulary: Open-
Vocabulary Models for Source Code.” In: ACM/IEEE 42nd Int’l Conf.
Softw. Eng. ACM, 2020, pp. 1073–1085.

[103] W. Ma et al. “GraphCode2Vec: Generic Code Embedding via Lexical
and Program Dependence Analyses.” In: Int’l Conf. Mining Softw.
Repositories. ACM, 2022, pp. 524–536.

[104] C. Niu et al. “SPT-code: Sequence-to-Sequence Pre-Training for
Learning Source Code Representations.” In: Int’l Conf. Softw. Eng.
ACM, 2022, pp. 2006–2018.

[105] L. Phan et al. CoTexT: Multi-task Learning with Code-Text Trans-
former. 2021. arXiv: 2105.08645.

[106] A. Kanade et al. “Learning and Evaluating Contextual Embedding
of Source Code.” In: Int’l Conf. Machine Learning. PMLR, 2020,
pp. 5110–5121.

[107] D. Shrivastava et al. “On-the-Fly Adaptation of Source Code Models.”
In: NeurIPS 2020 Ws. Comp.-Assisted Prog. 2020.

[108] S. Lu et al. CodeXGLUE: A Machine Learning Benchmark Dataset
for Code Understanding and Generation. 2021. arXiv: 2102.04664.

[109] P. Jain et al. “Contrastive Code Representation Learning.” In:
Conf. Empirical Methods in Natural Lang. Processing. ACL, 2021,
pp. 5954–5971.

[110] D. Zügner et al. Language-Agnostic Representation Learning of
Source Code from Structure and Context. 2021. arXiv: 2103.11318.

[111] N. Yefet et al. “Adversarial Examples for Models of Code.” In:
Proceedings of the ACM on Progr. Languages (2020), pp. 1–30.

[112] R. Compton et al. “Embedding Java Classes with Code2vec: Im-
provements from Variable Obfuscation.” In: Int’l Conf. Mining Softw.
Repositories. ACM, 2020, pp. 243–253.

[113] U. Alon et al. Code2seq: Generating Sequences from Structured
Representations of Code. 2019. arXiv: 1808.01400.

[114] V. Efstathiou et al. Semantic Source Code Models Using Identifier
Embeddings. 2019. arXiv: 1904.06929.

[115] L. Lannelongue et al. “Green Algorithms: Quantifying the Carbon
Footprint of Computation.” In: Adv. Science 8.12 (2021), p. 2100707.

[116] A. Lacoste et al. Quantifying the Carbon Emissions of Machine
Learning. 2019. arXiv: 1910.09700.

[117] A. S. Luccioni et al. Estimating the Carbon Footprint of BLOOM, a
176B Parameter Language Model. 2022. arXiv: 2211.02001.

[118] I. Lakim et al. “A Holistic Assessment of the Carbon Footprint of
Noor, a Very Large Arabic Language Model.” In: BigScience Episode
#5 – Ws. Challenges & Perspectives in Creating Large Lang. Models.
ACL, 2022, pp. 84–94.

[119] L. Posani et al. The Carbon Footprint of Distributed Cloud Storage.
2019. arXiv: 1803.06973.

[120] J. Baliga et al. “Green Cloud Computing: Balancing Energy in
Processing, Storage, and Transport.” In: Proceedings of the IEEE 99.1
(2011), pp. 149–167.

[121] L. M. Hilty et al. “The Five Most Neglected Issues in ”Green IT”.”
In: CEPIS Upgrade 12.4 (2011), p. 5.

[122] Z. Feng et al. “CodeBERT: A Pre-Trained Model for Programming
and Natural Languages.” In: Findings of the Association for Compu-
tational Linguistics: EMNLP 2020. 2020, pp. 1536–1547.

[123] X. Zhou et al. “A Map of Threats to Validity of Systematic Literature
Reviews in Software Engineering.” In: Asia-Pacific Softw. Eng. Conf.
2016, pp. 153–160.

[124] W. Martin et al. “A Survey of App Store Analysis for Software
Engineering.” In: IEEE Trans. Softw. Eng. 43.9 (2017), pp. 817–847.

[125] G. Kalaitzoglou et al. “A Practical Model for Evaluating the Energy
Efficiency of Software Applications.” In: Int’l Conf. ICT for Sustain-
ability. 2014.

[126] J. Pineau et al. “Improving Reproducibility in Machine Learning Re-
search (a Report from the NeurIPS 2019 Reproducibility Program).”
In: J. Machine Learning Research 22.1 (2022), 164:7459–164:7478.

[127] E. M. Bender et al. “On the Dangers of Stochastic Parrots: Can
Language Models Be Too Big?” In: Conf. Fairness, Accountability,
and Transparency. ACM, 2021, pp. 610–623.

12

https://arxiv.org/abs/2009.07235
https://arxiv.org/abs/2010.01625
https://arxiv.org/abs/1803.09544
https://arxiv.org/abs/2005.02161
https://arxiv.org/abs/2104.08006
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2102.07492
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2103.06333
https://arxiv.org/abs/2102.02017
https://arxiv.org/abs/2102.02017
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2104.02443
https://arxiv.org/abs/2110.10404
https://arxiv.org/abs/2105.08645
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2103.11318
https://arxiv.org/abs/1808.01400
https://arxiv.org/abs/1904.06929
https://arxiv.org/abs/1910.09700
https://arxiv.org/abs/2211.02001
https://arxiv.org/abs/1803.06973

	Introduction
	Related Work
	Sustainable Software Engineering
	Energy Consumption of Machine Learning Models
	Energy Consumption of Large Language Models

	Literature Search
	Task-Specific Code Models
	Task-Agnostic Code Models
	Discussion
	Energy Usage of Task-specific vs. Task-agnostic Models
	Sustainability Concerns Considered in DL4SE Studies
	When is Sharing Models More Efficient than Re-training?

	Threats to Validity
	Lessons Learned
	Recommendations
	Conclusion

