
The Effect of Offspring Population Size on NSGA-II: A
Preliminary Study

Max Hort
University College London
London, United Kingdom
max.hort.19@ucl.ac.uk

Federica Sarro
University College London
London, United Kingdom

f.sarro@ucl.ac.uk

ABSTRACT
Non-Dominated Sorting Genetic Algorithm (NSGA-II) is one of the
most popular Multi-Objective Evolutionary Algorithms (MOEA)
and has been applied to a large range of problems.

Previous studies have shown that parameter tuning can improve
NSGA-II performance. However, the tuning of the offspring popu-
lation size, which guides the exploration-exploitation trade-off in
NSGA-II, has been overlooked so far. Previous work has generally
used the population size as the default offspring population size for
NSGA-II.

We therefore investigate the impact of offspring population size
on the performance of NSGA-II. We carry out an empirical study by
comparing the effectiveness of three configurations vs. the default
NSGA-II configuration on six optimization problems based on four
Pareto front quality indicators and statistical tests.

Our findings show that the performance of NSGA-II can be im-
proved by reducing the offspring population size and in turn increas-
ing the number of generations. This leads to similar or statistically
significant better results than those obtained by using the default
NSGA-II configuration in 92% of the experiments performed.

CCS CONCEPTS
• Computing methodologies→ Genetic algorithms.

KEYWORDS
Genetic algorithms, multi-objective optimization, NSGA-II, off-
spring population
ACM Reference Format:
Max Hort and Federica Sarro. 2021. The Effect of Offspring Population
Size on NSGA-II: A Preliminary Study. In Proceedings of ACM Conference
(Conference’17). ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Evolutionary Algorithms (EA) have shown a wide applicability
to a broad range of problems. One reason for the popularity of
EAs is their ability to adapt to particular problems by tuning their
parameters [3]. Finding optimal choices for parameters, such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

population size and mutation rate, is difficult and significantly
changes the behavior of EAs and their achieved performance (fitness
landscape) [3, 5].

Genetic algorithms (GA) [6] are the most popular type of EA.
Generally speaking, GAs perform global search by emulating bi-
ological evolution. When implementing GAs, developers have to
make important decisions, including the population size, offspring
population size, and mutation rate [3]. The choice of parameters
has a a critical impact on algorithmic performance.

The offspring population size plays an important role in guiding
the exploration-exploitation trade-off for GAs [3]. While the parent
population determines the focus of the GA within the search space,
the size of the offspring population determines the rate of explo-
ration performed. A high offspring population size allows for the
exploration of a larger search space surrounding the parent pop-
ulation. However, increasing the size of the offspring population
size is accompanied by an increasing amount of fitness evaluations
on the offspring population, which effects the runtime of GAs.

This raises the question whether population size and offspring
population size in GAs should remain coupled. In particular, we
are interested in the effect of offspring population size on the per-
formance of Multi-Objective Evolutionary Algorithms (MOEAs).
Among those, we are interested in NSGA-II [4], which is one of
the most popular MOEAs. Just as in canonical GAs, the offspring
population size in NSGA-II is equal to the population size by default,
and previous work has not considered offspring population size
when tuning NSGA-II parameters (see e.g., [9, 10, 16]). We therefore
investigate the tuning of offspring population size for NSGA-II as
explained in the following.

2 EXPERIMENTAL DESIGN
In this section, we outline the design of the experiments we carry
out to investigate the effect of offspring population size on the
performance of NSGA-II. We present the research question as well
as the settings and the problems used in our experiments.

Research Question. To evaluate the effect of offspring popula-
tion size on the performance of NSGA-II, we answer the following
research question: RQ: How does offspring population size influence
the performance of NSGA-II?. For this purpose we adapt the offspring
population size of NSGA-II, while maintaining an identical amount
of fitness computations (e.g., reduce offspring population size and
increase number of generations).

Computational search. NSGA-II [4] is a well-known MOEA
based on Pareto-optimality. NSGA-II can be considered as an ex-
tension of GAs for multiple objective function optimization. The
fitness of an individual is determined for each objective and they
are ranked based on Pareto fronts and crowding distance. NSGA-II

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

proceeds with an initial population 𝑃 of size 𝑁 . Based on 𝑃 , an off-
spring population 𝑄 of identical size is generated, using selection,
crossover and mutation procedures.

Performance Metrics We selected four Pareto Front quality
indicators that are suitable for theoretical problems with known
Pareto fronts [8]. In particular, we consider: Generational Distance
(GD), Generational Distance Plus (GD+), Inverted Generational
Distance (IGD), Inverted Generational Distance Plus (IGD+) [7].

Test Problems.We investigate six test problems in our experi-
ments, which have been investigated in the past and are available
in pymoo, a framework for Multi-Objective Optimization (MOO)
in Python [2]: ZDT1-6. [18]. The selected six problems are MOO
problems with two objective functions.

Settings. For each of the NSGA-II configurations investigated
in our study (see Section 3) we set a parent population of size 100,
a budget of 25,000 fitness evaluations, a crossover probability of
0.9 and a mutation probability of 1/n (where n is the number of
decision variables), according to Deb et al. [4]. We used the NSGA-II
implementation provided in pymoo (version 0.4.2.2) [2].

Validation and Evaluation Method. To evaluate the effect of
offspring population size on the offspring ratio, we perform ex-
periments on six test problems. These experiments apply different
NSGA-II configurations and are repeated 100 times (each with dif-
ferent random seeds), to account for randomness [1]. We average
results achieved across multiple runs. We then use statistical signif-
icance tests to assess performance achieved with different offspring
population sizes and summarise the results following a win-tie-loss
procedure as done in previous work [11, 12, 14]. For this purpose,
we use the Wilcoxon Signed-Rank test [17] (𝛼 < 0.01), which is a
non-parametric test that makes no assumption about underlying
data distribution as done in previous work [13, 15].

3 RESULTS
To answer our research question, we compute the performance
of different configurations for NSGA-II. In particular, we compare
the default configuration (offspring population size = 100, genera-
tions = 250) against three different configurations which change
offspring population size and perform 25,500 fitness evaluations:
NSGA-II𝑂50𝐺500 (offspring population size = 50, generations = 500),
NSGA-II𝑂150𝐺166 (offspring population size = 150, generations =
166), NSGA-II𝑂200𝐺125 (offspring population size = 200, generations
= 125).

Each pair of configurations is compared on six problems and four
performance metrics, resulting in 24 comparisons. For each compar-
ison, we determine if one of the two configurations is statistically
better than the other, according to the Wilcoxon Signed-Rank test.
Table 1 summarises these results.

NSGA-II𝑂50𝐺500 is the only configuration able to outperform
the default one. It is statistically better than the default one in
12/24 comparisons and worse in only 2/24. The remaining 10/24
comparisons result in a tie as we cannot conclude whether the
differences are statistically significant.

4 CONCLUSIONS
Our findings show that the performance of NSGA-II, which gener-
ally sets the offspring population size equal to the population size

Default NSGA-II𝑂50𝐺500 NSGA-II𝑂150𝐺166 NSGA-II𝑂200𝐺125

Default - 12-10-2 1-9-14 4-2-18

NSGA-II𝑂50𝐺500 2-10-12 - 4-0-20 3-1-20
NSGA-II𝑂150𝐺166 14-9-1 20-0-4 - 2-9-13
NSGA-II𝑂200𝐺125 18-2-4 20-1-3 13-9-2 -

Table 1: Win-tie-loss summary of the Wilcoxon tests com-
paring performance (GD, GD+, IGD, IGD+) by each pair of
methods (columns vs. rows).

(i.e., by default both are set to 100), can be improved by reducing
the size of the offspring population. Such a reduction allows for
more generations and ultimately a better performance than using
the default configuration.

We therefore hope that in the future offspring population sizing
attracts more attention than previously, such that it will be included
in parameter tuning.

ACKNOWLEDGMENTS
M. Hort and F. Sarro are supported by the ERC grant 741278 (EPIC).

REFERENCES
[1] A. Arcuri and L. Briand. 2014. AHitchhiker’s guide to statistical tests for assessing

randomized algorithms in software engineering. STVR 24, 3 (2014), 219–250.
[2] J. Blank and K. Deb. 2020. Pymoo: Multi-Objective Optimization in Python. IEEE

Access 8 (2020), 89497–89509.
[3] K. De Jong. 2007. Parameter setting in EAs: a 30 year perspective. In Parameter

setting in Evolutionary Algorithms. Springer, 1–18.
[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiob-

jective genetic algorithm: NSGA-II. IEEE TEVC 6, 2 (2002), 182–197.
[5] B. Doerr, C. Gießen, C. Witt, and J. Yang. 2019. The (1+\lambda) Evolutionary

Algorithmwith Self-Adjusting Mutation Rate. Algorithmica 81, 2 (2019), 593–631.
[6] D. E. Goldenberg. 1989. Genetic algorithms in search, optimization and machine

learning.
[7] H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima. 2015. Modified distance

calculation in generational distance and inverted generational distance. In In-
ternational Conference on Evolutionary Multi-criterion Optimization. Springer,
110–125.

[8] M. Li, T. Chen, and X. Yao. 2020. How to Evaluate Solutions in Pareto-based
Search-Based Software Engineering? A Critical Review and Methodological
Guidance. IEEE TSE (2020). https://doi.org/10.1109/TSE.2020.3036108

[9] S. Ramesh, S. Kannan, and S. Baskar. 2012. Application of modified NSGA-II
algorithm to multi-objective reactive power planning. Applied Soft Computing
12, 2 (2012), 741–753.

[10] J. Sadeghi, S. Sadeghi, and S. Taghi A. Niaki. 2014. A hybrid vendor managed
inventory and redundancy allocation optimization problem in supply chain
management: An NSGA-II with tuned parameters. Computers & Operations
Research 41 (2014), 53–64.

[11] F. Sarro, F. Ferrucci, M. Harman, A. Manna, and J. Ren. 2017. Adaptive Multi-
Objective Evolutionary Algorithms for Overtime Planning in Software Projects.
IEEE TSE 43, 10 (2017), 898–917.

[12] F. Sarro, M. Harman, Y. Jia, and Y. Zhang. 2018. Customer rating reactions
can be predicted purely using app features. In IEEE International Requirements
Engineering Conference. 76–87.

[13] F. Sarro, R. Moussa, A. Petrozziello, and M. Harman. 2020. Learning From
Mistakes: Machine Learning Enhanced Human Expert Effort Estimates. IEEE TSE
(2020). https://doi.org/10.1109/TSE.2020.3040793

[14] F. Sarro and A. Petrozziello. 2018. Linear Programming As a Baseline for Software
Effort Estimation. ACM TOSEM 27, 3 (2018), 12:1–12:28.

[15] F. Sarro, A. Petrozziello, and M. Harman. 2016. Multi-objective software effort
estimation. In IEEE International Conference on Software Engineering. 619–630.

[16] A. S. Sayyad, K. Goseva-Popstojanova, T. Menzies, and H. Ammar. 2013. On
parameter tuning in search based software engineering: A replicated empiri-
cal study. In IEEE International Workshop on Replication in Empirical Software
Engineering Research. 84–90.

[17] F. Wilcoxon. 1992. Individual comparisons by ranking methods. In Breakthroughs
in statistics. Springer, 196–202.

[18] E. Zitzler, K. Deb, and L. Thiele. 2000. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation 8, 2 (2000), 173–195.

2

https://doi.org/10.1109/TSE.2020.3036108
https://doi.org/10.1109/TSE.2020.3040793

	Abstract
	1 Introduction
	2 Experimental Design
	3 Results
	4 Conclusions
	Acknowledgments
	References

