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ABSTRACT
The use of modern Natural Language Processing (NLP) techniques
has shown to be beneficial for software engineering tasks, such
as vulnerability detection and type inference. However, training
deep NLPmodels requires significant computational resources. This
paper explores techniques that aim at achieving the best usage of
resources and available information in these models.

We propose a generic approach, EarlyBIRD, to build compos-
ite representations of code from the early layers of a pre-trained
transformer model. We empirically investigate the viability of this
approach on the CodeBERT model by comparing the performance
of 12 strategies for creating composite representations with the
standard practice of only using the last encoder layer.

Our evaluation on four datasets shows that several early layer
combinations yield better performance on defect detection, and
some combinations improve multi-class classification. More specif-
ically, we obtain a +2 average improvement of detection accuracy
on Devign with only 3 out of 12 layers of CodeBERT and a 3.3x
speed-up of fine-tuning. These findings show that early layers can
be used to obtain better results using the same resources, as well as
to reduce resource usage during fine-tuning and inference.
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KEYWORDS
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1 INTRODUCTION
Automation of software engineering (SE) tasks supports developers
in creation and maintenance of source code. Recently, deep learning
(DL) models have been trained on large open-source code corpora
and used to perform code analysis tasks [3, 8, 27, 38]. Motivated
by the naturalness hypothesis stating that code and natural lan-
guage share statistical similarities, researchers and tool vendors
have started training deep NLP models on code and fine-tuning
them on SE tasks [11]. Amongst others, such models have been
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applied to type inference [17], code clone detection [50], program re-
pair [9, 15, 47, 48], and defect prediction [7, 30, 35, 44]. In NLP-based
approaches, SE tasks are frequently translated to code classification
problems. For example, detection of software vulnerabilities is a
binary classification problem, bug type inference is a multi-class
classification setting, and type inference is a multi-label multi-class
classification task in case a type is predicted for each variable in
the program.

Most modern NLP models build on the transformer architec-
ture [42]. This architecture uses attention mechanism and consists
of an encoder that converts an input sequence to a representation
through a series of layers, followed by decoder layers that convert
this representation to an output sequence. Although effective in
terms of learning capabilities, the transformer design results in
multi-layer models that need large amounts of data for training
from scratch. A well-known disadvantage of these models is the
high resource usage that is required for training due to both model
and data sizes. While a number of pre-trained models have been
published recently, fine-tuning these models for specific tasks still
requires additional computational resources [27].

This paper explores techniques that aim at optimizing the use of
resources and information available in models during fine-tuning.
In particular, we consider open white-box models, for which the
weights from each layer can be extracted. We focus on encoder-only
models, as they are commonly used for SE classification tasks, in
particular, the transformer-based encoders. The standard practice
in encoder models is to obtain the representation of the input se-
quence from the last layer of the model [14], while information
from earlier layers is usually discarded [21]. I.e., while the early
layers are used to compute the values of the last layer, they are
generally not considered as individual representations of the in-
put in the way that the last layer is. To exemplify the amount of
discarded information at inference, when fine-tuning a 12-layered
encoder, such as CodeBERT [14], for bug detection, 92% of the code
embeddings are ignored.1 However, it has been shown for natural
language that the early layers of an encoder capture lower-level
syntactical features better than the later layers [6, 24, 32, 40], which
can benefit downstream tasks.

Inspired by the line of research that exploits early layers of mod-
els, we propose EarlyBIRD,2 a novel and generic approach for build-
ing composite representations from the early layers of a pre-trained
encoder model. EarlyBIRD aims to leverage all available informa-
tion in existing pre-trained encoder models during fine-tuning to
either improve results or achieve competitive results at reduced

1 That is, the weights from 11 out of 12 layers are ignored for classification.
2 Early-layer Based Improvement or Reduction of resources useD
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resource usage during code classification. We empirically evaluate
EarlyBIRD on CodeBERT [14], a popular pre-trained encoder model
for code, and four benchmark datasets that cover three common SE
tasks: defect detection with the Devign and ReVeal datasets [20, 51],
bug type inference with the data from Yasunaga et al. [47], and
exception type classification [7]. The evaluation compares the base-
line representation that uses the last encoder layer with results
obtained via EarlyBIRD. We both fine-tune the full-size encoder
and its pruned version with only several early layers present in
the model. The latter scenario analyzes the trade-off between only
using a partial model and the performance impact on SE tasks.
Contributions: In this paper, wemake the following contributions:
(1) We propose EarlyBIRD, an approach for creating composite rep-
resentations of code using the early layers of a transformer-based
encoder model. The goal is to achieve better code classification
performance at equal resource usage or comparable performance
at lower resource usage.
(2) We conduct a thorough empirical evaluation of the proposed ap-
proach. We show the effect of using composite EarlyBIRD repre-
sentations while fine-tuning the original-size CodeBERT model on
four real-world code classification datasets. We run EarlyBIRD with
10 different random initializations of non-fixed trainable parame-
ters and mark the EarlyBIRD representations that yield statistically
significant improvement over the baseline.
(3) We investigate resource usage and performance of pruned models.
We analyze the trade-off between removing the later layers of a
model and the impact this has on classification performance.
Mainfindings: With EarlyBIRD, we achieve performance improve-
ments over the baseline code representation with the majority of
representations obtained from single early layers on the defect
detection task and selected combinations on bug type and excep-
tion type classification. Moreover, out of the reduced-size models
with pruned later layers, we obtain a +2 average accuracy improve-
ment on Devign with 3.3x speed-up of fine-tuning, as well as +0.4
accuracy improvement with 3.7x speed-up on average for ReVeal.

The remainder of the paper is organized as follows. We present
related work in Section 2 and provide background details of the
study in Section 3. The methodology is described in Section 4 which
is followed by experimental setup in Section 5. We present and
discuss results in Section 6 and conclude with Section 7.

2 RELATEDWORK
Here, we give an overview of language models for SE tasks and
recent encoder models, specifically, as well as different approaches
to use early layers of encoder models.

2.1 Transformers in Software Engineering
The availability of open source code and increased hardware capa-
bilities popularized training and usage of Deep Learning, including
NLP and Large Language Models (LLMs), for SE tasks. To date, deep
NLP models have already been applied in at least 18 SE tasks [28].
Pre-trained language models available for fine-tuning on SE tasks
largely build on the transformer architecture, sequence-to-sequence
models, and the attention mechanism [8, 9, 42]. One widely used
benchmark to test different deep learning architectures on SE tasks
is CodeXGLUE [27]. The benchmark provides data, source code for

model evaluation, and a leader-board ranking model performance
on different tasks [27].

SE tasks can be translated to input sequence classification and
generation of code or text. Examples of generative tasks in SE are
code completion, code repair, generation of documentation from
code and vice versa, and translation between different program-
ming languages. Such tasks are frequently approached with neural
machine translation models. Full transformer models for translation
from a programming language (PL) to a natural language (NL) or
PL-PL tasks include PLBART [1], PYMT5 [10], TFix [4], CodeT5 [43],
Break-It-Fix-It [47]. Alternatively, generative models can include
the decoder-only part of the transformer as in GPT-type models.
In this case, the decoder both represents the input sequence and
transforms it into the output sequence. Decoder-based models for
code include, for example, Codex and CodeGPT [8, 27].

In the tasks that require code or documentation representation
and their subsequent classification, the encoder-only architectures
are used more frequently than in translation tasks. Examples of
code classification problems are code clone detection, detection of
general bugs, such as the presence of swapped operands, wrong
variable names, syntax errors, or security vulnerabilities. A number
of encoder models for code applied a widely-used bi-directional
encoder, BERT [12], to pre-train it on code, with some modifications
of the input. In this way, the CodeBERT [14], GraphCodeBERT [16],
CuBERT [20], and PolyglotCodeBERT [2] models were created.
In detail, the 12-layer RoBERTa-based CodeBERT model was pre-
trained on NL-PL tasks in multiple PLs and utilized only the textual
features of code. Note that RoBERTa is a type of BERT model with
optimized hyper-parameters and pre-training procedures [26]. To-
gether with the decoder-only CodeGPT model, the encoder-only
CodeBERT model was used as a baseline in CodeXGLUE. Graph-
CodeBERT utilizes both textual and structural properties of code to
encode its representations. PolyglotCodeBERT is the approach that
improves fine-tuning of the CodeBERT model on a multi-lingual
dataset for a target task even if the target task tests only one PL.
This paper focuses on the fine-tuning strategies which, in con-
trast to PolyglotCodeBERT, do not increase the resource usage for
fine-tuning. CuBERT is a 24-layer pre-trained transformer-based
encoder tested on a number of code classification tasks, including
exception type classification. We test the performance of the pro-
posed EarlyBIRD composite representations on defect detection,
including the use of one of CodeXGLUE benchmarks, as well as
on error and exception type classification tasks. However, the goal
of this paper is to achieve improvement over the baseline model
when it is fine-tuned with composite code representations. We do
not aim to compare results with other models, but rather propose
an approach that is applicable to transformer-based encoders for
source code and show its performance gains compared to the same
model usage without the proposed approach.

2.2 Use of Early Encoder Layers
A number of studies explored different approaches to use informa-
tion from early layers of DL models for sequence representation,
such as probing single layers, pruning and variable learning rates.
One way to leverage information from early model layers is to give
different priority to layers while fine-tuning the models [19, 39].
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For example, the layer-wise learning rate decay (LLRD) strategy
and re-initialization of late encoder layers yielded improvement
over the standard fine-tuning of BERT on NLP tasks [49]. The LLRD
strategy was initially developed to tune the later encoder layers
with larger learning rate. In this way, the later layers can be better
adapted to a downstream task under consideration, because the
later layers are assumed to learn complex task-specific features
of input sequences [19]. Moreover, Peters et al. [33] showed that
the performance of fine-tuning improves if the encoder layers are
updated during fine-tuning in comparison with training only the
classifier on top of fixed (frozen) encoder layers.

Pruning later layers of transformer models is another way to
consider only early layers for fine-tuning [13, 31, 36]. Sajjad et
al. [36] investigated how the performance of transformer models
on NLP is affected when reducing their size by pruning layers. They
considered six pruning strategies, including dropping from different
directions, alternated layer dropping, or dropping layers based on
importance, for four pre-trained models: BERT [12], RoBERTa [26],
XLNET [46], ALBERT [22]. By pruning model layers, Sajjad et al.
were able to reduce the number of parameters to 60% of the ini-
tial parameter set while maintaining a high level of performance.
While the performance on downstream tasks varies in their study,
the lower layers are critical for maintaining performance when
fine-tuning for downstream tasks. In other words, dropping ear-
lier layers is detrimental to performance. Overall, pruning layers
reduces model size and in turn reduces fine-tuning and inference
time. In line with the work of Sajjad et al. [36], we extend our exper-
iments with the pruning of later layers and keeping earlier layers
present in the model (see RQ2 in Section 6).

The use of information from single early layers in a number of
EarlyBIRD experiments is also inspired by Peters et al. [32]. In their
study, Peters et al. present an empirical evidence that language
models learn syntax and part-of-speech information on earlier lay-
ers of a neural network, while more complex information, such
as semantics and co-reference relationships, are captured better
by deeper (later) layers. In another study, Karmakar and Robbes
probed pre-trained models of code, including CodeBERT, on tasks
of understanding syntactic information, structure complexity, code
length, and semantic information [21]. While Karmakar and Robbes
probed frozen early layers of different models for code in a single
strategy, we use 12 different strategies for combining unfrozen early
layers during fine-tuning and focus on the tasks of bug detection
or bug type classification. Similarly, Hernández López et al. [18]
probed different layers of five pre-trained models, including Code-
BERT [14] and GraphCodeBERT [16], and found that most syntactic
information is encoded in the middle layers. The novelty of our
study with respect to Karmakar and Robbes is that we combine
early layers in addition to extracting each of them, while Karmakar
and Robbes extracted early layer representations and used them
without composing new representations.

3 ENCODERS FOR CODE CLASSIFICATION
In this section, we present the background on transformer models
and different uses of the encoder-decoder—or full transformer—
architecture, as well as its encoder-only and decoder-only variants.
Because our study focuses on encoder-only open-source models

available for fine-tuning, the distinction between transformer types
is necessary for understanding the methodology.

In sequence-to-sequence generation scenarios, the transformer
model consists of a multi-layer encoder that represents the input
sequence and a decoder that generates the output sequence based
on the sequence representation from the encoder and the available
output generated at previous steps [42]. For source code classi-
fication tasks, the transformer is frequently reduced to only its
encoder followed by a classification head, a component added to
the encoder to categorize the representation into different classes.
Dropping the decoder for classification is motivated by resource
efficiency, because the decoder is conceptually only needed for
token generation from the input sequence. During classification of
an input, the encoder represents the sequence and passes it to the
classification head. Based on this design, a number of pre-trained
encoders have been published in recent years, such as BERT and
RoBERTa which were pre-trained on natural language, and similar
models pre-trained on code, or a combination of code and natural
language [12, 26]. The goal of pre-training in the pre-train and fine-
tune scenario is to capture language patterns in general, so that
they can serve as a basis for domain-specific downstream tasks.
Pre-trained models can be fine-tuned on different downstream tasks
in NLP and SE.

Processing the input sequence for classification consists of sev-
eral steps: tokenization, initial embedding, encoding the sequence
with an encoder, and passing the sequence representation through
a classification head. Tokenization splits the input sequence, adds
special tokens, matches the tokens to their ID’s in the vocabulary
of tokens, and unifies the resulting token length for samples in
a dataset. Embedding transforms the one-dimensional token ID
to an initial multi-dimensional static vector representation of the
token and is usually a part of the pre-trained encoder model. This
representation is updated using the attention mechanism of the
encoder. Because of attention, the representation of the input is
influenced by all tokens in the sequence, so it is contextualized.

CodeBERT is a RoBERTa-basedmodel with 12 encoder layers pre-
trained on 6 programming languages (Python, Java, JavaScript, PHP,
Ruby, and Go), as well as text-to-code tasks [14]. Pre-training was
done on the masked language modeling (MLM) and replaced token
detection (RTD) tasks. These tasks respectively train the model to
derive what token is masked in MLM, and in RTD predict whether
any token in an original sequence is swapped with a different
token that should not be in the sequence. CodeBERT outputs a
bidirectional encoder representation of the input sequence, which
means that the model considers context from pre-pending and
subsequent words to represent each token in the input sequence.

A pre-trained model is usually released with a pre-trained to-
kenizer. The pre-trained tokenizer ensures that token ID’s corre-
spond to those processed during pre-training. The tokenizer also
adds special tokens, such as a CLS token at the start of each input
sequence, PAD tokens to unify lengths of input sequences, and the
EOS token to signify the end of the input string and the start of
padding sequence [12]. All tokens are transformed by the model
in each encoder layer. Out of all tokens, the CLS token representa-
tion from the last layer, which is updated by all encoder layers, is
typically used as a representation for the full sequence.
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The standard practice of using the CLS token from the last en-
coder layer is motivated by the pre-training procedure. For example,
in MLM, the model predicts the masked token based on the CLS
token representation from the 12th layer of BERT and CodeBERT.
However, the choice of token to represent the full sequence in fine-
tuning can be different. For example, in PLBART [1], a transformer
model for code with both an encoder and a decoder, the EOS token is
used for representing the input sequence. In this paper, we propose
different ways to represent the input sequence and use information
from early layers of the model in an effective way.

4 METHODOLOGY
In this paper, the architecture of the code classification model con-
sists of five parts: (1) a tokenizer, (2) an embedding layer, (3) an
encoder with several layers, (4) a set of operations to combine se-
quence representations from encoder layers with EarlyBIRD, and
(5) a classification head. The output of each step is used as input into
the next step. An overview of the architecture is shown in Figure 1
and described below. The main difference between this architecture
and the classification architecture discussed in Section 3 is step (4);
the standard architecture only consists of steps (1–3) and (5).

Steps (1)–(3) use a pre-trained tokenizer, embedder, and encoder.
EarlyBIRD is formulated in a generic way and can be applied to any
encoder, but for our experiments, we fix the CodeBERT model and
tokenizer. In step (4), we combine information from all the layers
or from only some of the early layers of the encoder, as opposed
to the baseline that uses the last layer of the encoder. Finally, the
classification head in step (5) consists of one dropout layer and one
linear layer with softmax.

The encoder model represents each token of an input sequence
with a vector of size 𝐻 , also known as hidden size. For each input
sequence of length 𝑆 , and a hidden size𝐻 , we obtain a matrix of size
𝑆 ×𝐻 for each of 𝐿 layers of the base model as shown in Figure 1.
For example, the CodeBERT architecture is fixed with 12 encoder
layers, i.e., 𝐿 = 12 for that model. All the information available in
the encoder for one input sequence is stored in a tensor of size
𝐿 × 𝑆 ×𝐻 . The EarlyBIRD combinations must produce one vector ®𝑅
of size 𝐻 that represents the input, as shown in Figure 1. Keeping
the output code representation of size 𝐻 is required to provide a
fair comparison of EarlyBIRD composite representations with the
standard code representation obtained from the last layer. In this
way, the dimension of the classification head is the same for all

Input
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Layers

1
(5) Classification

head L

(4) Combination
Layers

H

H

1 R

S
S

CLS
token i1
...
token iN
EOS
PAD
...
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Figure 1: Model architecture for code classification.

combinations of early layers and has minimal possible influence
during fine-tuning.

As a strategy for systematically investigating composite repre-
sentations, we create a grid-search over three typical operations
to combine outputs of neural network layers – maximum pooling
(max pool), weighted sum and slicing – and two dimensions to
apply the operations: over tokens and/or layers. For the tokens
dimension, we either use all of the tokens from a specific layer or
only the CLS token. Among layers, we either slice one layer, sum or
take maximum values over all layers. The choice of considering ev-
ery token of a layer is motivated by the fact the transformer-based
models exhibit varying degrees of attention for different types of to-
kens [29], which indicates that solely using the CLS token might not
be the best choice for tasks [37]. We also experiment with different
sizes of the model. The combination strategies that use all layers of
the pre-trained model are divided into two categories: the strategies
that use CLS tokens from the encoder layers; the strategies that use
more tokens than just CLS from encoder layers.

When we slice the CLS token and apply each of the operations
over layers, we obtain the following CLS-token combinations:

(i) baseline: CLS token from the last layer, i.e., layer no. 𝐿;
(ii) CLS token from one layer3 no. 𝑙, 𝑙 ∈ {1, . . . , (𝐿 − 1)};
(iii) max pool over CLS tokens from all layers {𝑙}𝐿

𝑙=1;
(iv) weighted sum over CLS tokens from all layers {𝑙}𝐿

𝑙=1.
The second set of combinations uses representations of all the

tokens in tokenized input sequences, including the CLS token. We
first apply max pooling operation to either all tokens or all layers
and use the rest of operations. Then we apply weighted sum as the
first operation followed by max pool or slicing of a layer:

(v) max pool tokens from one layer no. 𝑙, 𝑙 ∈ {1, . . . , 𝐿};
(vi) max pool over all layers for each token in the input sequence,

max pool over tokens;
(vii) max pool over all layers for each token in the input sequence;

weighted sum over tokens;
(viii) max pool over all tokens for each layer no. 𝑙, 𝑙 ∈ {1, . . . , 𝐿};

weighted sum over layers
(ix) weighted sumover tokens from one layer no. 𝑙, 𝑙 ∈ {1, . . . , 𝐿};
(x) weighted sum over tokens for each one layer no. 𝑙, 𝑙 ∈

{1, . . . , 𝐿}; weighted sum over all layers;
(xi) weighted sum over all layers for each token in the input

sequence; weighted sum over all tokens.
Note that weights in the weighted sums are learnable parameters.
However, the added number of learnable parameters for fine-tuning
constitutes 0.00042%4 of the number of learnable parameters in the
baseline configuration. For this reason, we mention that the models
with combinations (ii-x) have the same model size while bearing in
mind the overhead of learnable weights in the weighted sums.

In addition to experiments with token combinations, we also
investigate performance of the model with first 𝑙 < 𝐿 layers and
the baseline token combination, described as follows:
3 We use each layer 𝑙 in the combinations separately if we denote 𝑙, 𝑙 ∈ {1, . . . , 𝐿},
and specify the set of layers {𝑙 }𝐿

𝑙=1 if several layers are used at once.
4 Weighted sum over tokens adds 𝑆 = 512 learnable weights. Because the weights
of the sum are shared across the layers, the maximum number of added weights is
𝐿 +𝐻 = 524 out of 124M learnable weights in the base model. Combinations without
weighted sums do not add extra learnable parameters to the base model. Weighted
sum over layers adds learnable 𝐿 = 12 weights for CodeBERT.
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Figure 2: Combinations of early encoder layers that lead to code representation vector ®𝑅 for each tokenized input sequence.
The latin numbering in brackets corresponds to the combinations described in Section 4. Observe that the presentation order
has been designed to preserve space by grouping similar combinations in the same subfigure.

(xii) CLS token from the last layer of the model with 𝑙 < 𝐿 encoder
layers.

Note that the baseline combination (i) with the usage of the CLS
token from layer 𝐿 corresponds to (ii) and (xii) if 𝑙 = 𝐿.

The combinations are presented in Figure 2. Similar combina-
tions are presented close to each other or are combined in the same
image if they only have minor differences and share the major parts.
For example, in Figure 2c, we illustrate combinations (iii) and (iv),
because both of them use CLS tokens from all layers combined using
max pooling or weighted sum. The roman numbers which indicate
combination types are preserved either in the descriptions below
the figures or in the figures themselves, but the order is changed.
We mention combination number corresponding to the description
in the current section, such as baseline combination (i) in Figure 2a
or combination (ii) for CLS token from one early layer in Figure 2b.
We highlight what parts of encoder layer outputs are used for each

combination with color. White cells correspond to the tokens that
are not used in early layer combinations. The goal of all combi-
nations is to obtain a vector representation ®𝑅 for each input code
sample. For example, in Figure 2a, we consider the last layer 𝐿 and
extract only the CLS token marked as ®𝑅.

Another remark on the EarlyBIRD combinations concerns the
usage of all tokens or only code tokens. Code tokens are those that
correspond to tokenized input words or sub-words and are shown
in Figure 2 as token𝑖1 , ..., token𝑖𝑁 for an input sequence 𝑖 of size
𝑖𝑁 . For each combination that uses more than just a CLS token, i.e.,
combinations (v-xi), we experiment with code tokens only, as well
as with all tokens, including CLS, EOS, and PAD. The motivation
to check code tokens exclusively stems from the hypothesis that
information in special tokens may introduce noise into results.
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5 EXPERIMENTAL SETUP
In this section, we describe the datasets used for empirical evalua-
tion and implementation details of fine-tuning with the proposed
EarlyBIRD approach. We investigate binary and multi-task code
classification scenarios to explore generalisability of our results.

5.1 Datasets for Source Code Classification
We fine-tune and test the CodeBERT model using the EarlyBIRD
approach on four datasets. The datasets span three tasks: defect
detection, error type classification and exception type classification
— with 2, 3, and 20 classes, respectively. They also contain data
in two programming languages, C++ and Python. In addition, the
chosen datasets have similar train subset sizes. In this way, we aim
to reduce the effect of the model’s exposure to different amounts
of training data during fine-tuning. Statistics of the datasets are
provided in Table 1. We report the size of the train/validation/test
splits. In addition, we compute the average number of tokens in
the input sequences upon tokenization with the pre-trained Code-
BERT tokenizer. Because the maximum input sequence size for the
CodeBERT model is limited to 𝑆 = 512, the number of tokens is
indicative of how much information the model gets access to or
how much information is cut off, in case of long inputs.
Devign: This dataset contains functions in C/C++ from two open-
source projects labelled as vulnerable or non-vulnerable [51]. We
reuse the train/validation/test split from the CodeXGLUE Defect
detection benchmark.5 The dataset is balanced: the ratio of non-
vulnerable functions is 54%.
ReVeal: Similarly to Devign, ReVeal is a vulnerability detection
dataset of C/C++ functions [7]. The dataset is not balanced: it con-
tains 90% non-vulnerable code snippets. Both the Devign and Re-
Veal datasets contain real-world vulnerable and non-vulnerable
functions from open-source projects.
Break-It-Fix-It (BIFI): The dataset contains function-level code
snippets in Python with syntax errors [47]. We use the original
buggy functions and formulate a task of classifying the code into
three classes: Unbalanced Parentheses with 43% of the total number
of code examples in BIFI, Indentation Error with 31% code samples,
Invalid Syntax containing 26% samples. The train/test split provided
in the dataset is reused, and the validation set is extracted as 10%
of training data.
Exception Type: The dataset consists of short functions in Python
with an inserted __HOLE__ token in place of one exception in code.6
The task is to predict one of 20 masked exception types for each
input function and is unbalanced. The dataset was initially created
from the ETH Py150 Open corpus7 as described in the original
paper [20]. We reuse the train/validation/test split provided by the
authors.

5.2 Implementation
The architecture is based on the CodeBERT8 tokenizer and encoder
model. The model defines the maximum sequence length, hidden

5 https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Defect-detection
6 https://github.com/google-research/google-research/tree/master/cubert
7 https://www.sri.inf.ethz.ch/py150
8 https://huggingface.co/microsoft/codebert-base

Table 1: Statistics of Fine-Tuning Datasets.

Dataset # classes Avg #
tokens

# code samples

Train Valid Test

Devign 2 614 21,854 2,732 2,732
ReVeal 2 512 18,187 2,273 2,274
BIFI 3 119 20,325 2,259 15,055
Exception Type 20 404 18,480 2,088 10,348

size, and has 12 layers, so 𝑆 = 512, 𝐻 = 768, 𝐿 = 12. Hyper-
parameters in the experiments are set to 𝐵 = 64, learning rate is
1𝑒-5, and dropout probability is 0.1. If the tokenized input sample
is longer than 𝑆 = 512, we prune the tokens in the end to make the
input fit into the model. We run fine-tuning with Adam optimizer
and testing for each combination 10 times with different seeds for 10
epochs and report the performance for the best epoch on average
over 10 runs. The best epoch is defined by measuring accuracy
on a validation set. We use Python 3.7 and Cuda 11.6, and run
experiments on one Nvidia Volta A100 GPU.

5.3 Evaluation Metrics
To present the impact of early layer combinations, we compare
the accuracy on the test set for all datasets, because it allows us
to compare our results with other benchmarks. In addition, we
report weighted F1-score denoted as F1(w) for a detailed analysis
of selected combinations to account for class imbalance. To obtain
the weighted F1-score, the regular F1-score is calculated for each
label and their weighted mean is taken. The weights are equal to
the number of samples in a class.

We also report results of the Wilcoxon signed-rank test on the
corresponding metrics for the combinations that show improve-
ment over the baseline [45]. The Wilcoxon test is a non-parametric
test suitable for the setting in which different model variants are
tested on the same test set, because it is a paired test. The Wilcoxon
test checks the null hypothesis whether two related paired samples
come from the same distribution. We reject the null hypothesis if
p-value is less than 𝛼 = 0.05. In case we obtain improvement of a
metric over the baseline with an EarlyBIRD combination and the
null hypothesis is rejected, we conclude that the combination per-
forms better and the result is statistically significant. For the pruned
models, we compute Vargha and Delaney’s 𝐴12 non-parametric ef-
fect size measure of the performance change for accuracy and F1(w)
with thresholds of 0.71, 0.64 and 0.56 for large, medium and small
effect sizes [41].

5.4 Research Questions
During our empirical evaluation of composite EarlyBIRD code rep-
resentations, we address the following research questions:

RQ1. Composite Code Representations with SameModel Size:
What is the effect of using combinations (ii-xi) of early layers with
the samemodel size in comparison to the baseline approach of using
only the CLS token from the last layer, i.e., combination (i), for code
representation on model performance in the code classification
scenario? The goal is to find out whether any of the EarlyBIRD

https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Defect-detection
https://github.com/google-research/google-research/tree/master/cubert
https://www.sri.inf.ethz.ch/py150
https://huggingface.co/microsoft/codebert-base
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combination types work consistently better for different datasets
and tasks.

RQ2. PrunedModels: What is the effect of reducing the number of
pre-trained encoder layers in combinations (xii) on resource usage
and model performance on code classification tasks? As opposed to
RQ1, in which we consider the combinations that do not reduce the
model size, this research question is devoted to investigation of the
trade-off between using less resources with reduced-size models
and performance variation in terms of classification metrics.

For both research questions, we evaluate the composite repre-
sentations on binary and multi-task code classification scenarios to
explore generalisability of the results obtained for the binary case.
We investigate if and what combinations result in better perfor-
mance, averaged over 10 runswith different seeds. For combinations
that improve the baseline on average, we also explore if the results
are statistically significant according to the Wilcoxon test.

6 RESULTS AND DISCUSSION
6.1 EarlyBIRD with Fixed-Size Models
To answer RQ1, we explore one-layer combinations, multi-layer
combinations, and estimate the statistical significance of the per-
formance improvement.

6.1.1 Combinations of Tokens in Single Selected Early Layers. Fig-
ure 3 shows a heatmap of the difference of the mean accuracy
obtained with each combination that uses only one selected early
layer compared to the baseline. In addition, we show the value of
the difference in mean accuracy for each combination type and
layer number. Note that the scale is logarithmic and in the most
extreme case spans the interval from ca. -37 to +2. Negative values
are shown in black, and positive values are shown in white. Differ-
ences that are statistically significant according to the Wilcoxon
test are marked with a star (∗) next to the value. Combinations
that correspond to the baseline are marked with “bsln” and have
zero difference, by definition. The results for the weighted F1-score
show a similar pattern as those for the mean accuracy. They are
visualized in the same way in Figure 4.

The first rows in Figures 3a and 3b correspond to the combina-
tions (ii) CLS token layer 𝑙 . With this combination type, average
improvement over the baseline is achieved with the majority of
early layers. Specifically, we obtain accuracy improvements ranging
from +0.2 to +2.0 for Devign in 8 out of 11 layers, and accuracy
improvements from +0.1 to +0.8 for ReVeal in 9 out of 11 layers.
The dynamic of the metric change over selected layer numbers is
different for Devign and ReVeal. In detail, the average performance
of combination (ii) is best with layer 3 on Devign (a +2.0 accuracy
improvement) and with layer 1 for ReVeal (a +0.8 accuracy improve-
ment). The best improvement in terms of F1(w) matches with layer
3 for Devign and with layer 2 for ReVeal, as shown in Figure 4.

Max pooling over all available tokens from a selected layer in
combination (v) also achieves performance improvement over the
baseline, as shown in rows 2 and 3 of Figures 3a, 3b. In general,
layers 4–11 yield higher accuracy and layers 2–11 higher F1(w) with
max pooling for Devign than the baseline. For ReVeal, all layers
except layer 11 result in better average accuracy and layers 2–10
have higher average F1(w). Max pooling over all tokens, including

1 2 3 4 5 6 7 8 9 10 11 12
Layer

(ii) CLS token layer l

(v) max pool all tokens

(v) max pool code tokens

(ix) w sum all tokens

(ix) w sum code tokens

-3.3 * 0.9 2.0 * 1.3 * 1.0 1.4 * 1.4 * 0.7 -0.01 0.01 0.2 bsln

-2.0 * -0.8 -0.1 0.4 0.9 1.3 * 1.0 * 1.2 * 1.2 * 0.9 * 0.5 -0.2

-2.0 * -0.8 * -0.1 * 0.3 * 1.0 * 1.3 * 1.0 * 1.1 * 0.7 * 0.9 * 0.4 * -0.4 *

-5.4 * -5.0 * -4.0 * -4.8 * -5.1 * -4.6 * -4.7 * -3.7 * -4.5 * -2.9 * -3.5 * -3.2 *

-5.2 * -4.3 * -5.3 -4.5 -3.4 -4.4 * -5.0 * -3.3 * -3.9 * -3.5 * -3.7 -4.6

Devign

-10

-1

0

+1

(a) Devign, accuracy.

1 2 3 4 5 6 7 8 9 10 11 12
Layer

(ii) CLS token layer l

(v) max pool all tokens

(v) max pool code tokens

(ix) w sum all tokens

(ix) w sum code tokens

0.8 * 0.5 0.1 -0.3 0.1 0.6 0.6 0.4 -0.00 0.4 0.2 bsln

0.7 * 0.8 * 0.8 0.8 * 0.7 0.8 0.9 * 0.7 0.5 0.3 0.04 0.2

0.7 * 0.8 0.8 0.8 0.8 0.8 1.0 0.6 0.5 0.4 -0.1 0.1

-1.6 -1.6 -1.5 -1.9 -1.0 -1.6 -1.6 * -1.1 -1.2 -1.2 -0.4 0.02

-2.0 * -2.3 * -1.3 -1.4 * -1.4 -1.1 -2.8 * -0.6 -1.4 -1.3 -1.6 -0.9

ReVeal

-10

-1

0

+1

(b) ReVeal, accuracy.

1 2 3 4 5 6 7 8 9 10 11 12
Layer

(ii) CLS token layer l

(v) max pool all tokens

(v) max pool code tokens

(ix) w sum all tokens

(ix) w sum code tokens

-27.0 *-14.7 *-11.1 * -6.7 * -2.8 * -1.8 * -1.0 * -0.7 * -0.4 * -0.2 * -0.03 bsln

-26.4 *-16.2 *-11.6 * -8.2 * -3.4 * -1.6 * -1.1 * -0.8 * -0.5 * -0.2 -0.01 0.1

-26.5 *-16.2 *-11.6 * -8.2 * -3.4 * -1.6 * -1.1 * -0.8 * -0.5 * -0.2 * 0.01 -0.01

-28.3 *-19.9 *-15.5 *-11.3 * -7.1 * -4.2 * -1.9 * -1.5 * -1.1 * -0.8 * -0.5 * -0.2 *

-28.3 *-19.9 *-15.5 *-11.4 * -7.2 * -4.4 * -1.8 * -1.3 * -1.2 * -0.7 * -0.6 -0.3

BIFI

-10

-1

0

+1

(c) BIFI, accuracy.

1 2 3 4 5 6 7 8 9 10 11 12
Layer

(ii) CLS token layer l

(v) max pool all tokens

(v) max pool code tokens

(ix) w sum all tokens

(ix) w sum code tokens

-27.3 *-15.4 *-10.7 * -8.2 * -7.4 * -6.2 * -4.2 * -2.8 * -2.3 * -1.7 * -1.1 * bsln

-27.4 *-15.9 *-10.7 * -8.7 * -7.4 * -5.1 * -3.2 * -2.5 * -2.1 * -1.6 * -0.7 -0.00

-27.4 *-15.9 *-10.7 * -8.7 * -7.4 * -5.2 * -3.2 * -2.4 * -2.0 * -1.7 * -0.8 * 0.2 *

-36.5 *-31.5 *-25.9 *-22.7 *-22.2 *-14.6 *-13.2 *-10.7 * -9.4 * -8.8 * -6.8 * -1.0

-36.4 *-31.5 *-25.9 *-22.7 *-22.3 *-14.7 *-13.3 *-10.7 * -9.7 * -9.0 * -7.6 * -1.0

Exception Type

-10

-1

0

+1

(d) Exception Type, accuracy.

Figure 3: Difference of mean accuracy between EarlyBIRD
and baseline (bsln) performance. The star ∗ indicates a statis-
tically significant difference w.r.t. the baseline.

special tokens, achieves the best statistically significant average
improvement of accuracy of +0.9 of all combinations for ReVeal.

The weighted sum of all tokens or code tokens exclusively in
combination (ix) does not improve the baseline performance. We
assume that fine-tuning for 10 epochs is not enough for this type
of combination, because the loss at epoch 10 on both training and
validation splits is higher for combinations (ix) than for combina-
tions with max pooling. Since the goal of this study is to use the
same or less resources for fine-tuning, we have not fine-tuned this
combination for more than 10 epochs.

While combinations (ii) and (v) perform better for the majority
of layers on the defect detection task, multi-class classification for
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1 2 3 4 5 6 7 8 9 10 11 12
Layer

(ii) CLS token layer l

(v) max pool all tokens

(v) max pool code tokens

(ix) w sum all tokens

(ix) w sum code tokens

-2.5 * 2.0 * 2.4 * 1.7 1.5 1.8 2.2 * 1.2 0.7 0.2 0.1 bsln

-1.4 * 0.1 0.8 1.0 2.0 * 2.3 * 1.6 2.1 * 2.1 * 1.8 1.4 -0.4

-1.4 * 0.1 * 0.8 * 0.9 * 2.0 * 2.2 * 1.6 * 2.0 * 1.7 * 1.7 * 1.4 * -0.1 *

-5.4 * -6.0 * -4.1 * -5.2 * -6.8 * -5.2 * -5.9 * -5.5 * -5.8 * -3.9 * -4.6 * -6.6 *

-5.0 * -3.7 -6.3 -6.0 -4.7 * -7.0 * -7.2 -4.1 * -5.5 * -3.8 -6.6 -10.8

Devign

-10

-1

0

+1

(a) Devign, F1(w).

1 2 3 4 5 6 7 8 9 10 11 12
Layer

(ii) CLS token layer l

(v) max pool all tokens

(v) max pool code tokens

(ix) w sum all tokens

(ix) w sum code tokens

-1.3 * 0.6 * 0.2 0.2 0.3 0.2 0.4 * -0.1 -0.2 0.04 0.05 bsln

-1.1 * 0.04 0.3 0.7 * 0.4 0.1 0.2 0.3 0.2 -0.03 -0.2 -0.6 *

-1.1 * 0.1 * 0.3 * 0.7 * 0.4 * 0.2 * 0.3 * 0.2 * 0.2 * 0.1 * -0.2 * -0.5 *

-2.0 * -1.9 * -1.9 * -2.1 * -2.1 * -2.0 * -1.9 * -2.0 * -2.0 * -1.7 * -1.4 * -1.2 *

-2.2 * -2.4 -1.9 -1.9 * -1.8 -2.0 -2.4 -1.7 -2.2 -1.8 -2.0 -1.5 *

ReVeal

-10

-1

0

+1

(b) ReVeal, F1(w).

1 2 3 4 5 6 7 8 9 10 11 12
Layer

(ii) CLS token layer l

(v) max pool all tokens

(v) max pool code tokens

(ix) w sum all tokens

(ix) w sum code tokens

-27.2 *-14.8 *-11.2 * -6.8 * -2.8 * -1.8 * -1.0 * -0.7 * -0.4 * -0.2 * -0.03 bsln

-26.8 *-16.3 *-11.7 * -8.3 * -3.4 * -1.6 * -1.1 * -0.8 * -0.5 * -0.2 -0.01 0.1

-26.9 *-16.4 *-11.8 * -8.3 * -3.5 * -1.6 * -1.1 * -0.8 * -0.5 * -0.2 * 0.01 -0.01

-28.5 *-20.1 *-15.7 *-11.5 * -7.1 * -4.2 * -1.9 * -1.5 * -1.1 * -0.8 * -0.5 * -0.2 *

-28.5 *-20.1 *-15.7 *-11.6 * -7.4 * -4.4 * -1.8 * -1.3 * -1.2 * -0.7 * -0.6 -0.3

BIFI

-10

-1

0

+1

(c) BIFI, F1(w).

1 2 3 4 5 6 7 8 9 10 11 12
Layer

(ii) CLS token layer l

(v) max pool all tokens

(v) max pool code tokens

(ix) w sum all tokens

(ix) w sum code tokens

-30.8 *-17.2 *-12.0 * -9.0 * -7.9 * -6.5 * -4.4 * -2.9 * -2.4 * -1.8 * -1.1 * bsln

-33.3 *-18.8 *-12.8 *-10.1 * -8.3 * -5.7 * -3.6 * -2.6 * -2.2 * -1.8 * -0.8 * -0.1

-33.4 *-18.9 *-12.8 *-10.1 * -8.2 * -5.8 * -3.5 * -2.6 * -2.2 * -1.8 * -1.0 * 0.1 *

-37.8 *-32.7 *-26.7 *-23.3 *-23.3 *-15.2 *-13.8 *-10.8 * -9.6 * -9.0 * -6.8 * -1.1

-37.7 *-32.8 *-26.8 *-23.3 *-23.4 *-15.3 *-13.8 *-10.8 * -9.8 * -9.2 * -7.6 * -0.9

Exception Type

-10

-1

0

+1

(d) Exception Type, F1(w).

Figure 4: Difference of mean weighted F1-scores (F1(w)) be-
tween EarlyBIRD and baseline (bsln). The star ∗ indicates a
statistically significant difference w.r.t. the baseline.

bug or exception type prediction does not benefit from the combi-
nations to the same extent as the binary task. Only max pooling
of tokens of the last encoder layer achieves better performance
than the baseline for BIFI (+0.1 accuracy, +0.1 weighted F1-score
improvements) and Exception Type (a +0.2 accuracy, +0.1 weighted
F1-score improvements) datasets.

The impact of using all tokens or code tokens exclusively depends
on the dataset. The difference between performance of single-layer
combinations with max pooling of all tokens and only code tokens
constitute 0.0-0.1 accuracy or F1(w). For the multi-class tasks, the
average results improve with the use of each later layer in the
model. We obtain performance improvement with the max pooling

D

(iii) max pool CLS tokens

(iv) w sum CLS tokens

(vi) max pool layers, max pool all tokens

(vi) max pool layers, max pool code tokens

(vii) max pool layers, w sum all tokens

(vii) max pool layers, w sum code tokens

(viii) max pool all tokens, w sum layers

(viii) max pool code tokens, w sum layers

(xi) w sum layers, w sum all tokens

(xi) w sum layers, w sum code tokens

(x) w sum all tokens, w sum layers

(x) w sum code tokens, w sum layers
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Figure 5: Difference of average accuracy between EarlyBIRD
and baseline performance on D (Devign), R (ReVeal), B (BIFI),
E (Exception Type). The star ∗ indicates a statistically signifi-
cant difference w.r.t. the baseline.

combination (v), while other one-layer combinations do not perform
better than the baseline.

The best performing results on Devign and Exception Type
classification datasets are statistically significant according to the
Wilcoxon test. For ReVeal, the second best result is statistically
significant. We have not obtained statistically significant improve-
ments for BIFI. We explain it by the fact that the baseline metric is
already high, i.e., 96.7 accuracy. Achieving improvement is usually
more challenging when the baseline performs at this level.

In essence, the combinations that involve CLS tokens correspond-
ing to the single layer (ii), as well as the max pooling combina-
tions (v) perform better on average for defect detection datasets
Devign and Reveal. However, only the max pooling combination (v)
of tokens from the last encoder layer outperforms the baseline
on average for multi-class datasets BIFI and Exception Type. The
weighted sum of tokens from a selected layer (ix) performs worse
than the baseline if fine-tuned for the same number of epochs for all
tasks. Multi-class classification tasks require the information from
the last layer for better performance in our experiments, while the
binary task of defect detection allows us to use early layers and
improve the performance over the baseline.

6.1.2 Multi-Layer Combinations. The average performance differ-
ence with the baseline of combinations that utilize early layers is
shown as heatmaps in Figures 5 and 6. We include the value of the
average performance difference and add a star (∗) to the number if
the difference is statistically significant. Again, negative values are
shown in black, and positive values are shown in white.

When we use all information from the available layers, the im-
provement over the baseline is less than what was observed in
Section 6.1.1, where one specific layer has been used. In detail, out
of combinations that involve CLS tokens from all early layers, no
combination performs better than the baseline for ReVeal, BIFI,
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(iii) max pool CLS tokens

(iv) w sum CLS tokens

(vi) max pool layers, max pool all tokens

(vi) max pool layers, max pool code tokens

(vii) max pool layers, w sum all tokens

(vii) max pool layers, w sum code tokens

(viii) max pool all tokens, w sum layers

(viii) max pool code tokens, w sum layers

(xi) w sum layers, w sum all tokens

(xi) w sum layers, w sum code tokens

(x) w sum all tokens, w sum layers

(x) w sum code tokens, w sum layers
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Figure 6: Difference of mean weighted F1-score between com-
binations and baseline. Datasets are abbreviated toD (Devign),
R (ReVeal), B (BIFI), E (Exception Type). The star ∗ indicates
a statistically significant difference w.r.t. the baseline.

or Exception Type datasets. However, the best improvement (+0.6
accuracy) out of experiments with all layers is obtained on Devign
with the weighted sum of CLS tokens in the combination (iv), which
is less than the maximum improvement with the combinations from
one selected early layer in Section 6.1.1. The improvement of F1(w)
is shown in Figure 6. We obtained slightly better improvements
of F1(w) for Devign, no F1(w) improvement for the unbalanced
ReVeal dataset. The average F1(w) difference with the baseline for
multi-class tasks are the same as accuracy difference.

If we consider the combinations that involve all tokens, the
combination (vi) with two max pooling operations outperforms the
baseline for Devign, Reveal, and BIFI with accuracy improvement
between +0.1 and +0.3. No combination that involves all layers
outperforms the baseline on average for Exception Type dataset.
Combinations that involve one max pooling and one weighted
sum of all tokens perform worse or neutral in comparison with
the baseline. The combinations with only weighted sums perform
worse than the baseline on average.

Answer to RQ1. EarlyBIRD achieves statistically significant ac-
curacy and F1-score improvements for defect detection datasets
by using single-layer combinations that involve the CLS token
or max pooling over all tokens. For bug type and exception type
classification, max pooling of the tokens from the last encoder
layer has improved the performance. Weighted sum of tokens
does not improve performance over the baseline.

6.2 Pruned Models
This section is devoted to the combinations of early layers that are
initialized with the first 𝑙 < 𝐿 early layers from the pre-trained
model and fine-tuned as 𝑙-layer models — combinations (xii). We
start by comparing the performance of using the CLS token from
layer 𝑙 of the full-size model, i.e., combination (ii), and using the

CLS token from layer 𝑙 of the model that has 𝑙 layers in total —
combination (xii). Figure 7 presents average accuracy obtained
with these two combinations depending on the used layer, as well
as the baseline combination of using CLS from the last layer 𝐿 =

12 of CodeBERT. On average, the pruned models with reduced
size perform on par with the full-size model for defect detection
on the balanced Devign dataset, and for bug type and exception
type classification. However, the performance of the two analogical
combinations diverges for the unbalanced defect detection dataset
ReVeal in layers 4 and 6–11.

Most importantly, the results show that reducing the model size
and using the CLS token from the last layer of the reduced model
performs on par with the baseline for the defect detection task.
The best improvement with the reduced model is achieved with
the 3-layer encoder for Devign and the 1-layer encoder for ReVeal.
This result shows that it is possible to both reduce resources and
improve the model’s performance during fine-tuning on the defect
detection task with both a balanced and unbalanced dataset.

To explore the trade-off between resource usage and perfor-
mance degradation for bug type and exception type identification,
we show the average speed-up of one fine-tuning epoch and the per-
formance loss compared to the baseline for BIFI and Exception Type
datasets in Table 2. We also report the corresponding values for
Devign and ReVeal, for which both gains and losses of performance
are indicated. The speed up is reported as a scaling factor of the
baseline time. The metric difference is shown as gain or loss of the
weighted F1-score and accuracy compared to the baseline perfor-
mance. Statistically significant improvements are reported in bold,
while statistically insignificant losses are marked with a star (∗).
The 𝐴12 effect sizes are indicated by three shades of blue as the cell
color, with the darkest shade indicating a large effect (𝐴12 > 0.71),
the middle shade indicating a medium effect (𝐴12 > 0.64), and the
lightest shade indicating a small effect (𝐴12 > 0.56). We also under-
line and discuss selected results that improve the metric values and
reduce resource usage.
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Figure 7: Model performance with a subset of 𝑙 < 𝐿 layers (xii)
vs. models with all layers (ii); CLS token from layer 𝑙 .
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Table 2: Comparison of reduced sizemodels with the baseline.We reportmetric performance for the baseline and difference with
the baseline for reduced models, average time for one-epoch fine-tuning (Time) in mm:ss format, speed-up and performance
variation obtainedwithmodels with 𝑙 layers. Statistically significant improvements aremarked in bold, statistically insignificant
performance losses are marked with *, and 𝐴12 effect sizes for accuracy and F1(w), if any, are indicated by cell color, respectively
large , medium, and small . The best metric improvement with highest speed-up factors are underlined.

Devign ReVeal BIFI Exception Type
𝑙 Time Speed-up Acc F1(w) Time Speed-up Acc F1(w) Time Speed-up Acc F1(w) Time Speed-up Acc F1(w)

12 8:50 1.0x 61.7 60.4 6:57 1.0x 89.2 88.5 8:41 1.0x 96.7 96.7 7:22 1.0x 75.4 75.3

11.0 8:03 1.1x +0.3 -0.1* 6:56 1.0x +0.6 +0.3 7:07 1.2x -0.1* -0.1* 6:33 1.1x -1.0 -1.0
10.0 7:13 1.2x +0.1 +0.3 6:20 1.1x +0.2 -0.0* 6:22 1.4x -0.3 -0.3 6:01 1.2x -1.8 -1.8
9.0 6:40 1.3x +0.3 +0.5 5:53 1.2x +0.3 -0.1* 5:46 1.5x -0.5 -0.5 5:29 1.3x -2.2 -2.3
8.0 5:52 1.5x +0.9 +1.1 5:15 1.3x +0.2 -0.1* 5:13 1.7x -0.6 -0.6 4:55 1.5x -3.0 -3.0
7.0 5:23 1.6x +1.4 +2.2 4:44 1.5x +0.3 +0.2 4:43 1.8x -1.1 -1.1 4:20 1.7x -4.1 -4.4
6.0 4:54 1.8x +1.4 +2.0 4:25 1.6x +0.3 +0.1 4:10 2.1x -1.7 -1.7 3:50 1.9x -6.1 -6.6
5.0 4:03 2.2x +1.0 +1.5 3:45 1.9x +0.1 +0.2 3:31 2.5x -3.0 -3.0 3:15 2.3x -7.3 -7.7
4.0 3:22 2.6x +1.2 +1.6 3:06 2.2x -0.2* +0.2 2:53 3.0x -6.8 -6.8 2:41 2.7x -8.3 -9.2
3.0 2:41 3.3x +2.0 +2.4 2:28 2.8x +0.1 +0.3 2:15 3.8x -11.3 -11.3 2:10 3.4x -10.7 -12.0
2.0 2:00 4.4x +1.0 +1.9 1:52 3.7x +0.4 +0.6 1:34 5.5x -14.7 -14.8 1:34 4.7x -15.4 -17.1
1.0 1:18 6.8x -3.2 -2.3 1:13 5.7x +0.8 -1.2 0:58 9.0x -27.2 -27.3 0:59 7.4x -27.3 -30.7

The majority of combinations (xii) with pruned models outper-
form the baseline for Devign and ReVeal. Furthermore, models with
2–10 layers show statistically significant improvements of both
metrics on Devign, with the 3-layer model achieving +2 accuracy
improvement with a 3.3-times average speed-up of fine-tuning with
the same hardware and software. Not only does the 3-layer model
improve the accuracy over CodeBERT baseline to 63.7, but also
outperforms several other models tested on Devign and reported
on the CodeXGLUE benchmark [27]. In particular, our pruned 3-
layer CodeBERT model outperforms the full-transformer model
PLBART [1], and code2vec code representations pre-trained on
abstract syntax trees and code tokens in a joint manner [1]. How-
ever, our pruned model does not outperform the best performing
model reported on CodeXGLUE, CoText, which achieves 66.62 ac-
curacy [34].

Models with 1 and 11 layers achieve statistically significant accu-
racy improvements for ReVeal. However, the 1-layer model reduces
the F1(w) score. The use of layer 11 does not impact the speed of
fine-tuning, while the 1-layer model yields the 3.7x acceleration of
the baseline fine-tuning speed. The lack of speed-up with 11-layer
model can be explained by the fact that the number of trainable pa-
rameters does not decrease linearly with the removal of later layers,
since the additional embedding layer and classification head remain
unchanged. The 2-layer model results in the best improvement of
F1(w) which is statistically significant. The 2-layer model improves
accuracy on ReVeal as well. For Devign and ReVeal, statistically
significant improvements have large effect size.

For BIFI, we obtain statistically insignificant decrease of F1(w)
and accuracy according to the Wilcoxon test which brings about
1.2x speed-up of the fine-tuning with the 11-layer model. If we
decrease the number of layers to 8, the performance on BIFI stays
within the (baseline metric−1) limit, but we gain up to 1.7x average
speed-up of one-epoch fine-tuning. In case of using models with 1–
10 layers, we observe a statistically significant change of distribution
and decrease of metric values.

For the unbalanced Exception Type dataset, the performance
drops faster and the speed-up is less prominent than for BIFI. The
change of mean values of the metrics for all models is statistically
significant. In detail, the metrics decrease by -1.0 absolute metric
value at 11 layers with 1.1x fine-tuning speed-up and by -1.8 with
10 layers with 1.2x speed-up. We explain the sharper decline of
the combinations performance by the lower baseline metric val-
ues (75.39 accuracy, 75.30 weighted F1-score) than in the case of
BIFI (96.7 accuracy and weighted F1-score). For BIFI, statistically
insignificant deterioration have small effect size. However, for both
BIFI and Exception Type datasets, we observe deterioration of per-
formance of large effect size with pruned models.

We conclude that for the BIFI dataset with high-performing
baseline and 3 classes, the performance loss at removing each layer
is less than for the Exception Type classification dataset with lower
baseline performance and 20 classes. The resource usage, which
is correlated with time spent on tuning, decreases faster for BIFI
than for Exception Type. This is partially explained by a larger
classification head for the Exception Type dataset, because this
dataset has 20 classes as opposed to only 3 classes in BIFI. In other
words, we observe that the BIFI dataset has a strong baseline that
is hard to outperform with pruning. By contrast, the complexity of
the Exception Type dataset can influence the results in the opposite
way: The baseline performance is already not very strong, and it
proves hard to further improve on it with early layers only.

Answer to RQ2. We obtain performance improvements over
the baseline as well as fine-tuning speed-ups for both defect
detection datasets by using the CLS token from the last layer
of pruned models. For multi-class classification, performance
decreases upon pruning each layer from the end of the model.
The decrease is sharper for the dataset with 20 exception types
than for the task with 3 bug types.
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6.3 Threats to Validity
The main threat to external validity is that the results are empirical
and may not generalize to all code classification settings, including
other programming languages, tasks, and encoder-based models
for code. We have tested EarlyBIRD combinations on code in C
for defect detection and Python for bug type and exception type
classification in this study. The choice of the CodeBERT as the
encoder model and its internal structure affects the results. For
instance, an encoder model that takes smaller input sequences can
perform worse on the same datasets, because larger parts of input
code sequences have to be pruned in this case. The external validity
can be improved by testing on more datasets and encoder models.

The threats to internal validity concern the dependency of mod-
els on initializations of trainable parameters and the choice of
methods. Classification head and weighted sums with trainable
parameters in our experiments depend on the initialization of the
parameters and can lead the model to arrive at different local min-
ima during fine-tuning. To reduce the effect of different random
initializations, we have fine-tuned and tested all EarlyBIRD combi-
nations 10 times with different random seeds.

In addition, we used the Wilcoxon test to verify whether the
achieved improvements are statistically significant. However, the
Wilcoxon test only estimates whether measurements of baseline
values and EarlyBIRD combinations are drawn from different distri-
butions. The reported times spent on fine-tuning and corresponding
speed-ups have the purpose of illustrating the reduction in resource
usage, and will depend on the hardware used. Even when using
factors of speed-up for pruned models, there is a chance that these
numbers will be different on other hardware configurations.

We implemented the algorithms and statistical procedures in
Python, with the help of widely used libraries such as PyTorch,
NumPy and SciPy. However, we cannot guarantee the absence of
implementation errors which may have affected our evaluation.

7 CONCLUDING REMARKS
In this paper, we have proposed EarlyBIRD, an approach to combine
early layers of encoder models for code, and tested different early-
layer combinations on the software engineering tasks of defect
detection, bug type and exception type classification. Our study
is motivated by the hypothesis that early layers contain valuable
information that is discarded by the standard practice of repre-
senting the code with the CLS token from the last encoder layer.
EarlyBIRD provides ways to improve the performance of existing
models with the same resource utilization, as well as for resource
usage reduction while obtaining comparable results to the baseline.
Results: Using EarlyBIRD, we obtain statistically significant im-
provements over the baseline for the majority of the combinations
that involve a single encoder layer on defect detection, and with
selected EarlyBIRD combinations on bug type and exception type
classification. Max pooling of tokens from selected single layers
yields performance improvements for all datasets. Both the classifi-
cation performance and the average fine-tuning time for one epoch
are improved by pruning the pre-trained model to its early layers
and using the CLS token from the last layer of the pruned model.
For defect detection, this results in a +2.0 increase in accuracy and
a 3.3x fine-tuning speed-up on Devign, and up to +0.8 accuracy

improvement with a 3.7x speed-up on ReVeal. Pruned models do
not lead to multi-class classification performance gains, but they
do show a fine-tuning speed-up and the associated decrease in
resource consumption.

The results show that pruned models with reduced size either
work better or can result in a reduction of resource usage during
fine-tuning with different levels of performance variation, which
indicates the potential of EarlyBIRD in resource-restricted scenar-
ios of deploying defect detection and but type classification in
production environments. For example, EarlyBIRD achieves a 2.1x
speed-up for BIFI while reducing accuracy from 96.7 to 95.0.
Future Work: The study can be extended by investigating the
generalization to other encoder models. We are in the process of
studying the performance of EarlyBIRDwith two new encoder mod-
els: StarEncoder [23] and ContraBERT_C [25]. Another direction
for future research is whether the types of layer combination and
pruning, as we have investigated in this paper for encoder architec-
tures, are also effective techniques for decoder and encoder-decoder
architectures. Moreover, it would be of interest to experiment with
other code classification tasks, such as general bug detection and the
prediction of vulnerability types. The latter could be investigated
using the CWE types from the Common Weakness Enumeration as
labeled in the CVEfixes dataset [5].
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